期刊文献+

支持向量机方法中加权后验概率建模方法 被引量:11

Weighted posterior probability output for support vector machines
原文传递
导出
摘要 为解决传统支持向量机方法不提供概率输出的问题,在支持向量机多类分类问题输出概率建模中,提出了加权后验概率建模方法。该方法在对多个两类支持向量机分类器的输出概率进行组合时,充分考虑了各个两类支持向量机分类器的差异。依据Bayesian理论,采用后验概率作为各个两类支持向量机分类器的权系数。实验结果表明,与投票法及Pairwise Coupling方法相比,加权后验概率方法具有较低的分类错误率,不仅具有较好的分类性能,而且得到的后验概率具有较好的概率分布形态。该方法有效地解决了实际多类分类问题中支持向量机的概率建模问题。 A weighted posterior probability method is presented to calculate the probability outputs of support vector machines (SVMs) for multi class cases. The differences and weights for combination of the probabilty output among these two-class classifiers calculated from the posterior probability are given based on the Bayesian theory. Tests show that the weighted posterior probability method has less classification errors, better classification ability, and a better probability distribution of the posterior probability than the voting method or the Pairwise Coupling method. This method effectively provides probability outputs of SVMs in the multi-class case.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第10期1689-1691,共3页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60273005) 中国博士后科学基金项目(2005038351) 湖北省自然科学基金项目(2004ABA043) 湖北省教育厅科学技术研究重点项目(D200612002)
关键词 史持向量机 概率建模 多类分类器 后验概率 support vector machines probability modeling multi-class classifier the posterior probability
  • 相关文献

参考文献9

  • 1Platt J. Probabilities for support vector machines [C]// Smola A, Bartlett P, Scholkopf B. Advances in Large Margin Classiers. Cambridge MA: MIT Press, 2000:61 - 74.
  • 2Sollich P. Bayesian methods for support vector machines: Evidence and predictive class probabilities [J]. Machine Learning, 2002, 46:21-52.
  • 3Kwok J T Y. Moderating the outputs of support vector machine classifiers [J]. IEEE Trans on Neural Networks, 1999, 10(5): 1018-1031.
  • 4Hsu C W, Lin C J. A comparison of methods for multi-class support vector machines [J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425.
  • 5Moreira M, Mayoraz E. Improved pairwise coupling classification with correcting classifiers [C]// Proc Of 10th European Conference on Machine Learning. Chemnitz: Springer-Verlag, 1998:160-171.
  • 6Xin D, Wu Z H. Speaker recognition using continuous density support vector machines [J]. Electronics Letters, 2001, 37(17): 1099-1101.
  • 7Wu T F, Lin C J, Weng R C. Probability estimates for multi-class classification by pairwise coupling [J]. Journal of Machine Learning Research, 2004, 5: 975- 1005.
  • 8张翔,肖小玲,徐光祐.基于最大熵估计的支持向量机概率建模[J].控制与决策,2006,21(7):767-770. 被引量:12
  • 9Hsu C W. Department of Computer Science [EB/OL]. 2006. National Taiwan University, Taipei 106, China. http: //www. csie. ntu. edu. tw/- cjlin/libsvmtools/.

二级参考文献9

  • 1Wahba G. Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACV[A].Advances in Kernel Methods Support Vector Learning[C]. Massachusetts:MIT Press, 1999: 69-88.
  • 2Platt J C. Probabilities for Support Vector Machines[A], Advances in Large Margin Classifiers[C].Massachusetts :MIT Press, 2000 : 61-74.
  • 3Sollich P. Bayesian Methods for Support Vector Machines:Evidence and Predictive Class Probabilities[J]. Machine Learning , 2002,46 : 21-52.
  • 4Kwok J T Y. Moderating the Outputs of Support Vector Machine Classifiers[J]. IEEE Trans on Neural Networks,1999,10(5) : 1018-1031.
  • 5Hastie T, Tibshirani R. Classification by Pairwise Coupling [J]. The Annals of Statistics, 1998, 26 (1) :451-471.
  • 6Vapnik V. Statistical Learning Theory [M]. New York: Wiley, 1998.
  • 7Lin H T, Lin C J, Weng R C. A Note on Platt's Probabilistic Outputs for Support Vector Machines [R].National Taiwan University, Taibei, 2003.
  • 8Theodoridis S, Koutroumbas K. Pattern Recognition[M]. Amsterdam: Elsevier Press, 2003.
  • 9张文生,王珏,戴国忠.支持向量机中引入后验概率的理论和方法研究[J].计算机研究与发展,2002,39(4):392-397. 被引量:8

共引文献11

同被引文献132

引证文献11

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部