期刊文献+

基于最优化分类的视频镜头谱聚类算法 被引量:2

Video shot spectral clustering algorithm by optimized automatic cluster model selection
原文传递
导出
摘要 谱聚类是目前最有效的视频镜头聚类算法之一,但是如何自动选择最优化的分类个数仍是谱聚类算法中的难题。该文提出一种基于最优化分类的视频镜头谱聚类算法,对每个镜头采用分区域的Gauss混合模型(DGMM)进行特征建模,并提取模型参数特征作为镜头谱聚类的特征向量,通过构造DGMM和谱聚类的联合评价函数来自动选择最优化的分类个数和特征空间维数。实验结果表明,该文提出的算法比原有谱聚类算法分类结果更加准确和有效。 Spectral clustering is one of the most efficient video shot clustering algorithms. The automatic cluster model selection is still an open issue for the spectral clustering algorithm. This paper presents a video shot spectral clustering algorithm that incorporates optimized automatic cluster model selection. A distributed gauss mixture model (DGMM) is used to represent the spatial-temporal features of each shot with the model parameters used as the feature vectors for the spectral clustering. Both the DGMM and the spectral clustering measurements are used to in a globally optimized method to automatically select the number of clusters and the feature-space dimension. Tests show that the method gives better cluster model selections and clustering results.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第10期1700-1703,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(6050306360432030)
关键词 多媒体技术 视频分析 谱聚类 Gauss混合模型 multimedia technology video analysis spectral clustering Gauss mixture model (GMM)
  • 相关文献

参考文献10

  • 1Gargi U, Kasturi R, Strayer S H. Performance characterization of video-shot-change detection methods [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2000, 10(1): 1 - 13.
  • 2张子银,白雪生,徐光祐,鄢恒权.闪光灯和标题条对新闻视频镜头检测影响的研究[J].清华大学学报(自然科学版),2003,43(1):71-74. 被引量:5
  • 3Yeung M, Yeo B L, Liu B. Segmentation of video by clustering and graph analysis [J]. Computer Vision and Image Understanding, 1998, 71(1): 94- 109.
  • 4Kijak E, Oisel L, Gros P. Hierarchical structure analysis of sport videos using hmms [J]. IEEE Conference on Image Processing, 2003, 2: 1025- 1028.
  • 5Perez D G, Loui A, Sun M T. Finding structure in home videos by probabilistic hierarchical clustering [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(6): 539-548.
  • 6Shi J, Malik J. Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.
  • 7Szymkowiak-Have A, Girolami M A, Larsen J. Clustering via kernel decomposition [J]. IEEE Transactions on Neural Networks, 2006, 17(1): 256-264.
  • 8Odobez J M, Gatica-Perez D, Guillemot M. Video shot clustering using spectral methods [C] //3th International Workshop on Content-Based Multimedia Indexing(CBMI), Rennes, Sept. 2003.
  • 9Greenspan H, Goldberger J, Mayer A. Probabilistic space-time video modeling via piecewise GMM [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 211(3) : 384 - 396.
  • 10Odobez J M, Gatica-Perez D, Guillemot M. On spectral methods and structuring of home videos. IDIAP Technical Report, IDIAP-RR-55 [R]. Valais, Switzerland: IDIAP Research Institute, Nov. 2002.

二级参考文献6

  • 1Kikukawa T,Kawafuchi S. Development of an automatic summary editing system for the audio-visual resources [J]. Trans Electron Inform,1992,J75-A: 204-212.
  • 2Nagasaka A,Tanaka Y. Automatic video indexing and full-video search for object appearance [A]. Knuth E,Wegner L M. Visual Database System II [C]. Amsterdam: Elsevier,1995. 113-127.
  • 3Zhang H J,Kannkanhalli A,Smoliar S W. Automatic partition of full-motion video [J]. Multimedia Systems,1993,1(1): 10-28.
  • 4Yeo B L,Liu B. Rapid scene analysis on compressed video [J]. IEEE Trans Circuits and Systems for Video Technology,1995,5: 533-544.
  • 5Rousseeuw P J,Leroy A M. Robust Regression and Outlier Detection [M]. New York: John Wiley and Sons,1987.
  • 6YESKY. 闪光灯摄影的基本方法[EB/OL]. http: //www2.yesky.com/47185920/109573.shtml,2000.YESKY. The basic method of flash photography [EB/OL]. http: //www2.yesky.com/47185920/109573.shtml,2000.(in Chinese)

共引文献4

同被引文献26

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部