期刊文献+

A KAM Theorem for Reversible Systems of Infinite Dimension

A KAM Theorem for Reversible Systems of Infinite Dimension
原文传递
导出
摘要 For reversible systems of infinite dimension we prove an infinitely dimensional KAM theorem with an application to the network of weakly coupled oscillators of friction. The KAM theorem shows that there are many invariant tori of infinite dimension, and thus many almost periodic solutions, for the reversible systems. For reversible systems of infinite dimension we prove an infinitely dimensional KAM theorem with an application to the network of weakly coupled oscillators of friction. The KAM theorem shows that there are many invariant tori of infinite dimension, and thus many almost periodic solutions, for the reversible systems.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第10期1777-1796,共20页 数学学报(英文版)
基金 Supported by NNSFC and NCET-04-0365 in part by STCSM-06ZR14014
关键词 KAM theorem reversible system weakly coupled oscillators KAM theorem, reversible system, weakly coupled oscillators
  • 相关文献

参考文献26

  • 1Kolmogorov, A. N.: On the conservation of conditionally periodic motions for a small change in Hamilton's function, (Russian). Dokl. Acad. Nauk SSSR, 98, 525-530 (1954).
  • 2Arnol'd, V. I.: Proof of a theorem by A. N. Kolmogorov on the persistence of quasiperiodic motions under small perturbations of the Hamiltonain. Russian Math. Surveys, 18(5), 9-36 (1963).
  • 3Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Gott. II, Math. -Phys. Kl., 1, 1-20 (1962).
  • 4Vittot, M., Bellissard, J.: Invariant tori for an infinite lattice of coupled classical rotators pdimensional Hamiltonian systems, Preprint, CPT-Marseille, 1985.
  • 5Frohlich, J., Spencer, T., Wayne, C. E.: Localization in Disordered, Nonlinear Dynamical Systems. Statistical Physics, 42, 247-274 (1986).
  • 6Poschel, J.: Small divisors with spatial structure in infinite dimensional Hamiltonian systems. Commun. Math. Phys., 127, 351-393 (1990).
  • 7Kuksin, S. B.: Nearly integrable infinite-dimensional Hamiltonian systems, Lecture Notes in Math., 1556, Springer-Verlag, New York, 1993.
  • 8Poschel, J.: A KAM-theorem for some nonlinear PDEs. Ann. Scuola Norm. Sup. Pisa, Cl. Sci., IV Ser. 15, 23, 119-148 (1996).
  • 9Wayne, C. E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys, 127, 479-528 (1990).
  • 10Yuan, X.: Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete and Continuous Dynamical Systems, to appear.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部