摘要
It is well known that there is a close connection between tame kernels and ideal class groups of number fields. However, the latter is a very difficult subject in number theory. In this paper, we prove some results connecting the p^n-rank of the tame kernel of a cyclic cubic field F with the p^n-rank of the coinvariants of μp^n×CI(δE,T) under the action of the Galois group, where E = F(ζp^n ) and T is the finite set of primes of E consisting of the infinite primes and the finite primes dividing p. In particular, if F is a cyclic cubic field with only one ramified prime and p = 3, n = 2, we apply the results of the tame kernels to prove some results of the ideal class groups of E, the maximal real subfield of E and F(ζ3).
It is well known that there is a close connection between tame kernels and ideal class groups of number fields. However, the latter is a very difficult subject in number theory. In this paper, we prove some results connecting the p^n-rank of the tame kernel of a cyclic cubic field F with the p^n-rank of the coinvariants of μp^n×CI(δE,T) under the action of the Galois group, where E = F(ζp^n ) and T is the finite set of primes of E consisting of the infinite primes and the finite primes dividing p. In particular, if F is a cyclic cubic field with only one ramified prime and p = 3, n = 2, we apply the results of the tame kernels to prove some results of the ideal class groups of E, the maximal real subfield of E and F(ζ3).
基金
Supported by NSFC10571080,SRFDP