期刊文献+

The Existence of Weak Solutions to the 2D Euler Equations with Initial Vorticity in BMO

The Existence of Weak Solutions to the 2D Euler Equations with Initial Vorticity in BMO
原文传递
导出
摘要 We shall prove that there exists a weak solution to the 2D Euler equations with initial vorticity in BMO and initial velocity in L^∞. We shall prove that there exists a weak solution to the 2D Euler equations with initial vorticity in BMO and initial velocity in L^∞.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第10期1881-1888,共8页 数学学报(英文版)
基金 Supported by Post Doctor Science Foundation of China(20060400336) NSFC(10571156,10601046) ZJNSF(RC97017)
关键词 Euler equation weak solution BMO Euler equation, weak solution, BMO
  • 相关文献

参考文献16

  • 1Beale, J. T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3D Euler equations. Comm. Math. Phys., 94(1), 61-66 (1984).
  • 2Serfati, P.: Solutions C^∞ en temps, n-lg lipschitz bornees en espace et equation d'Euler. C. R. Acad. Sci. Paris, 320, 555-558 (1995).
  • 3Vishik, M.: Hydrodynamics in Besov Spaces. Arch. Rat. Mech. Anal., 145, 197-214 (1998).
  • 4Zhu, X. R.: Global Existence of Solutions to 2D Euler Equations with Initial Velocity in B∞^1,1,, Preprint.
  • 5DiPerna, R., Madja, A.: Concentrations in regularization for 2D incompressible flow. Comm. Pure Appl. Math., 40, 301-345 (1987).
  • 6Giga, Y., Miyakawa, T., Osada, H.: 2D Navier-Stokes flow with measures as initial vorticity. Arch. Rat. Mech. Anal., 104, 223-250 (1988).
  • 7Chae, D.: Weak solutions of 2D Euler equations with initial vorticity in L In L. J. Diff. Eqs., 103, 323-337 (1993).
  • 8Lions, P. L.: Mathematical topics in fluid mechanics, vol 1: incompressible models, Oxford Lecture Series in Mathematics and its Application, Vol. 3, Clarendon Press, Oxford, 1996.
  • 9Yudovich, V. L.: Nonstationary flow of an ideal incompressible liquid. Zh. Vych. Mat., 3, 1032-1066 (1963).
  • 10Yudovich, V. L.: Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett., 2, 27-38 (1995).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部