期刊文献+

Discrepancy of Certain Kronecker Sequences Concerning Transcendental Numbers

Discrepancy of Certain Kronecker Sequences Concerning Transcendental Numbers
原文传递
导出
摘要 Let ω1,..., ωs be a set of real transcendental numbers satisfying a certain Diophantine inequality. The upper bound for the discrepancy of the Kronecker sequence ({nω1},..., {nωs})(1 ≤ n ≤ N) is given. In particular, some low-discrepancy sequences are constructed. Let ω1,..., ωs be a set of real transcendental numbers satisfying a certain Diophantine inequality. The upper bound for the discrepancy of the Kronecker sequence ({nω1},..., {nωs})(1 ≤ n ≤ N) is given. In particular, some low-discrepancy sequences are constructed.
作者 Yao Chen ZHU
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第10期1897-1902,共6页 数学学报(英文版)
基金 Project supported by National Natural Science Foundation of China(No.10571180)
关键词 DISCREPANCY Kronecker-sequence transcendental number discrepancy, Kronecker-sequence, transcendental number
  • 相关文献

参考文献9

  • 1Schmidt, W. M.: Metrical theorems on fractional parts of sequemces. Trans. Amer. Math. Soc., 110, 493-518 (1964).
  • 2Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences, John Wiley, New York, 1974.
  • 3Niederreiter H.: Application of Diophatine approximations to numerical integration, Diophantine Aproximetion and Its Applications (Osgood C.F., ed.), Academic Press, New York, 1973.
  • 4Hua, L. K., Wang, Y.: Applications of Number Theory to Numerical Analysis, Springer, Berlin, 1981.
  • 5Drmota, M., Tichy, R. F.: Sequences, Discrepancies and Applications, Springer, Berlin, 1997.
  • 6Xu, G. S.: Simultaneous approximation to values of exponential function at algebraic points. Acta Mathematica Sinica, New Series, 9(4), 421-431 (1993).
  • 7Osgood, C. F.: Product type bounds on the approximation of values of E and G functions. Mh. Math., 102(1), 7-25 (1986).
  • 8Makarov, Yu. N.: Estimates of the measure of linear independence of the values of E-functions. Vestn. Mosk. Univ., Set. I, 33(2), 3-12 (1978).
  • 9Sorokin, N. N.: On the irrationality of the values of hypergeometric functions. Mat. Sb., 127(2), 245-258 (1985).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部