期刊文献+

不同模量简支梁均布荷载下的弹性力学解 被引量:21

ELASTICITY SOLUTION OF SIMPLE BEAMS WITH DIFFERENT MODULUS UNDER UNIFORMLY DISTRIBUTED LOAD
下载PDF
导出
摘要 利用半逆解法,寻求了不同模量简支梁在均布荷载下的弹性力学解,并比较了现有的近似解。分析表明:由于材料不同模量的引入,应力较大程度地重新分布,使得材料力学解答中的最大正应力被低估;解答误差随着材料的不同模量上下波动,深梁情况下还会加剧。 A semi-inverse method from stress functions is used to obtain elasticity solutions of a simply supported beam with different modulus under uniformly distributed load and its approximate solutions derived from mechanics of material are also checked. The results show that because the materials with different modulus are employed, the stress redistributes across section in a large extent and the maximum normal stress obtained from mechanics of materials is underestimated to a certain degree. These errors fluctuate according to different modulus of materials and enlarge especially in the case of deep beams.
出处 《工程力学》 EI CSCD 北大核心 2007年第10期51-56,共6页 Engineering Mechanics
关键词 弹性力学 不同模量 平截面假设 应力 位移 elasticity different modulus beam plane section assumption stress displacement
  • 相关文献

参考文献8

二级参考文献47

  • 1姚文娟,叶志明.不同模量弯压柱的解析解[J].应用数学和力学,2004,25(9):901-909. 被引量:50
  • 2姚文娟,叶志明.不同模量横力弯曲梁的解析解[J].应用数学和力学,2004,25(10):1014-1022. 被引量:44
  • 3张允真,孙东科,赵达壮,孔庆宽.不同模量θ≠0的数值计算及θ=0的误差分析[J].大连理工大学学报,1994,34(6):641-645. 被引量:8
  • 4赵达壮,张允真,李政.不同模量悬式绝缘子的形状优化[J].大连理工大学学报,1994,34(1):10-16. 被引量:4
  • 5[1]Medri G. A nonlinear elastic model for isotropic materials with different behavior in tension and compression[J].Transactions of the ASME,1982,26(104):26-28.
  • 6[3]Srinivasan R S,Ramachandra L S.Large deflection analysis of bimodulus annular and circular plates using finite elements[J].Computers & Structures,1989,31(5):681-691.
  • 7[4]Srinivasan R S, Ramachandra L S. Axisymmetric buckling and post-bucking of bimodulus annular plates[J].Eng Struct,1989,11(7):195-198.
  • 8[6]Papazoglou J L, Tsouvalis N G.Mechanical behaviour of bimodulus laminated plates[J].Composite Structures,1991,17(1):1-22.
  • 9[8]TSENG Yi-ping,LEE Cheng-tao.Bending analysis of bimodular laminates using a higher-order finite strip method[J].Composite Structures,1995,30(4):341-350.
  • 10[9]YE Zhi-ming.A new finite element formulation for planar elastic deformation[J].Int J Numerical Methods in Engineering,1997,14(40):2579-2592.

共引文献93

同被引文献136

引证文献21

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部