期刊文献+

A Modified Extended Bayesian Method for Parameter Estimation 被引量:2

A Modified Extended Bayesian Method for Parameter Estimation
原文传递
导出
摘要 This paper presents a modified extended Bayesian method for parameter estimation. In this method the mean value of the a priori estimation is taken from the values of the estimated parameters in the previous iteration step. In this way, the parameter covariance matrix can be automatically updated during the estimation procedure, thereby avoiding the selection of an empirical parameter. Because the extended Bayesian method can be regarded as a Tikhonov regularization, this new method is more stable than both the least-squares method and the maximum likelihood method. The validity of the proposed method is illustrated by two examples: one based on simulated data and one based on real engineering data. This paper presents a modified extended Bayesian method for parameter estimation. In this method the mean value of the a priori estimation is taken from the values of the estimated parameters in the previous iteration step. In this way, the parameter covariance matrix can be automatically updated during the estimation procedure, thereby avoiding the selection of an empirical parameter. Because the extended Bayesian method can be regarded as a Tikhonov regularization, this new method is more stable than both the least-squares method and the maximum likelihood method. The validity of the proposed method is illustrated by two examples: one based on simulated data and one based on real engineering data.
出处 《Tsinghua Science and Technology》 SCIE EI CAS 2007年第5期546-553,共8页 清华大学学报(自然科学版(英文版)
基金 the China-Austria Cooperation Project (No. Ⅶ.C.3)
关键词 parameter estimation inverse problem REGULARIZATION sensor placement parameter estimation inverse problem regularization sensor placement
  • 相关文献

参考文献10

  • 1Amstad C,Kovari K,Grob H.The report on the displace- ments measuring of Munich subway tunnel line 5/9, Im- pler Street[].Technique Report Federal Institute of Tech- nology Zurich.1984
  • 2Xiang Zhihai,Swoboda G,Cen Zhangzhi.Parameter identification for a subway tunnel[].CDROM Proceedings of the nd International Conference on Advances in Structural Engineering and Mechanics.2002
  • 3Scales L E.Introduction to Non-Linear Optimization[]..1985
  • 4Lee I M,Kim D H.Parameter estimation using extended Bayesian method in tunneling[].Computers and Geotech- nics.1999
  • 5Yusuke H,Lie W T,Soumitra G.Inverse analysis of an embankment on soft clay by extended Bayesian method[].International Journal for Numerical and Analytical Meth- ods in Geomechanics.1994
  • 6Xiang Zhihai,Swoboda G,Cen Zhangzhi.Parameter iden- tification and its application in tunneling[].Numerical Simulation in Tunnelling.2003
  • 7Calvetti D,Morigi S,Reichel L,Sgallari F.Tikhonov regu- larization and the L-curve for large discrete ill-posedproblems[].Journal of Computational and Applied Mathe- matics.2000
  • 8Engl H W,Hanke M,Neubauer A.Regularization of In- verse Problems[]..1996
  • 9Dontchev A L,Zolezzi T.Well-Posed Optimization Prob- lems[]..1993
  • 10Romanov V G.Inverse Problems of Mathematical Physics[]..1987

同被引文献23

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部