期刊文献+

搅拌槽中垂直列管外壁表面传热系数的模拟计算 被引量:2

Numerical Simulation of External Heat Transfer Coefficient of Vertical Heating Tubes in a Stirred Tank
下载PDF
导出
摘要 使用计算流体力学(CFD)软件CFX对搅拌槽内垂直列管外壁的温度场进行了数值模拟,根据温度分布计算了不同高度处列管外壁的局部表面传热系数和列管外壁的平均表面传热系数.搅拌槽直径D=500mm,4组对称垂直加热列管兼作挡板,搅拌桨为四斜叶桨(PBT),以甘油为工作物料,计算中雷诺数为232.研究结果表明,背向流体的列管外壁的局部表面传热系数最小,在同一列管、相同位置、不同离底高度下的最大局部表面传热系数与最小局部表面传热系数之比达到6.23;列管外壁各点局部表面传热系数沿轴向的分布差别很大,在同一离底高度、同一列管的不同位置,其最大与最小值之比达4.48,且均随着轴向离底高度的增加而减小;每根列管外壁的平均表面传热系数的最大与最小值之比为2.35,将4根列管外壁的平均表面传热系数模拟结果与文献进行了比较,发现二者基本吻合. The commercial software CFD code CFX was used to simulate temperature profiles in a φ500 mm stirred vessel with a pitched-blade turbine (PBT). The liquid (glycerol) was heated by four sets of vertical heating tubes symmetrically fixed in the tank and the tubes also served as baffles. The simulation of liquid flow field at the Reynolds number of 232 was used to compute the local external heat transfer coefficient on the outer surface of vertical heating tubes (hL) at different heights. The results showed that hj at the downwind side surface was the smallest, and hLmax/hLmin reached 6.23 at different off-bottom clearances of the same position on the same tube. hL varied greatly along the axis, and hLmax/hLmin reached 4.48 at the same off-bottom clearance of different positions on the same tube, it decreased as the off-bottom clearance increasing. The ratio of the maximum and minimum average surface heat transfer coefficient values of the tubes was 2.35. The CFD predictions were in good agreement with the literature.
出处 《过程工程学报》 EI CAS CSCD 北大核心 2007年第5期853-858,共6页 The Chinese Journal of Process Engineering
关键词 搅拌槽 列管 数值模拟 表面传热系数 stirred tank vertical heating tube numerical simulation external heat transfer coefficient
  • 相关文献

参考文献12

  • 1丁绪准 周理.液体搅拌[M].北京:化学工业出版社,1983.56-58.
  • 2张曦,翁文国,张嘉锋,何世平.液晶测温测速技术在流体实验中的应用[J].中国科学技术大学学报,2000,30(1):51-55. 被引量:12
  • 3Bakker A,Laroche R D,Wangand M H,et al.Sliding Mesh Simulation of Laminar Flow in Stirred Reactors[J].Trans.IChemE,1997,75(A):42-44.
  • 4Delaplace G,Torrez C,Andre C,et al.Numerical Simulation of Flow of Newtonian Fluids in an Agitated Vessel Equipped with a Nonstandard Helical Ribbon Impeller[A].Van Den Akker H E A,Derksen J J.The 10th European Conference on Mixing[C].The Netherlands:Elsevier,2000.289-296.
  • 5Syrjanen J K,Manninen M T.Detailed CFD Prediction of Flow around a 45°Pitched Blade Turbine[A].Van Den Akker H E A,Derksen J J.The 10th European Conference on Mixing[C].The Netherlands:Elsevier,2000.265-271.
  • 6Oshinowo L,Jaworski Z,Dyster K N,et al.Predicting the Tangential Velocity Field in Stirred Tanks Using the Multiple Reference Frames (MRF) Model with Validation by LDA Measurements[A].Van Den Akker H E A,Derksen J J.The 10th European Conference on Mixing[C].The Netherlands:Elsevier,2000.281-288.
  • 7Kuriyama M,Ohta M,Yanagawa K,et al.Heat Transfer and Temperature Distribution in an Agitated Tank Equipped with Helical Ribbon Impeller[J].J.Chem.Eng.Jpn.,1981,14(4):323-330.
  • 8Kaminoyamag M,Watanabe M,Nishi K,et al.Numerical Simulation of Local Heat Transfer Coefficients in Stirred Vessel with Impeller for Highly Viscous Fluids[J].J.Chem.Eng.Jpn.,1999,32(1):23-30.
  • 9马青山,王英琛,施力田,王嘉骏.多层搅拌桨流动场的测量与数值模拟[J].化工学报,2003,54(12):1661-1666. 被引量:30
  • 10Huang X B,Wang Z F,Shi L T,et al.Numerical Simulation of Temperature Profiles in a Stirring Vessel with Vertical Heating Tubes[A].Van Den Akker H E A,Derksen J J.The 11th European Conference on Mixing[C].The Netherlands:Elsevier,2000.189-196.

二级参考文献5

共引文献58

同被引文献21

  • 1覃文洁,胡春光,郭良平,左正兴.近壁面网格尺寸对湍流计算的影响[J].北京理工大学学报,2006,26(5):388-392. 被引量:50
  • 2Zakrzewska B,Jaworski Z.CFD modelling of turbulent jacket heat transfer in a Rushton turbine stirred vessel[J].Chemical Engineering&Technology,2004,27(3):237-242.
  • 3Lakghomi B,Kolahchian E,Jalali A,et al.Coil and jacket's effects on internal flow behavior&heat transfer in stirred tanks[J].World Academy of Science,Engineering and Technology,2008,24:873-877.
  • 4Jayakumar J S,Mahajani S M,Mandal J C,et al.Experimental and CFD estimation of heat transfer in helically coiled heat exchangers[J].Chemical Engineering Research and Design,2008,86(3):221-232.
  • 5Kumar V,Faizee B,Mridha M,et al.Numerical studies of a tube-in-tube helically coiled heat exchanger[J].Chemical Engineering and Processing,2008,47(12):2287-2295.
  • 6ZHANG Shi-shuai(张师帅).计算流体动力学及其应用[M].武汉:华中科技大学出版社,2011.
  • 7Kelly W J,Humphrey A E.Computational fluid dynamics model for predicting flow of viscous fluids in a large fermentor with hydrofoil flow impellers and internal cooling coils[J].Biotechnol Prog,1998,14(2):248-258.
  • 8STOESSEL F(弗朗西斯·施特塞尔).化工工艺的热安全-风险评估与工艺设计[M].北京:科学出版社,2009.
  • 9Bourne J R,Buerli M,Regnass,W.Heat transfer and power measurement in stirred tanks using heat flow calorimetry[J].Chem Eng Sci,1981,36(2):347-354.
  • 10Wilson E E.A basis for rational design of heat transfer apparatus[J].Trans Am Soc Mech Eng,1915,37:47-53.

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部