期刊文献+

基于三角模融合算子的电能质量去噪算法 被引量:13

A De-Noising Method of Power Quality Based on Triangle Module Operator
下载PDF
导出
摘要 针对电能质量信号的去噪要求,结合模糊中值滤波算法和模糊均值滤波算法的优点,采用信息融合技术,利用模糊理论中的三角模算子将模糊均值滤波算法和模糊中值滤波算法的隶属度融合,并通过加权滤波的方法对信号进行去噪。实验结果表明,该方法克服了传统方法的缺点,能够在去噪的同时保留信号的突变点信息,适合对电能质量信号进行去噪,其算法设计简单、实用性强、有广阔的应用前景。  De-noising is necessary and important to power quality research. Because of the uncertainty of noise,the fuzzy theory has better effect than traditional methods. A novel de-noising algorithm based on information fusion technology is proposed in this paper. By the triangle module operator,the degree of membership of fuzzy median filter and that of fuzzy average filter are fused together. Then weighting filter noise is eliminated. This method can meet the requirements of power quality signals de-noising and combine the advantages of the fuzzy media filter and the fuzzy average filter. The test results prove that this method overcomes the traditional one'sshortcomings and keeps the break points’ information while de-noising. So it suitable for deal with power quality signals. It is believed that it has wide application prospect.
作者 唐良瑞 杨雪
出处 《电工技术学报》 EI CSCD 北大核心 2007年第9期154-158,共5页 Transactions of China Electrotechnical Society
基金 国家自然科学基金资助项目(60402004)。
关键词 电能质量 去噪 模糊 隶属度 三角模算子 Power quality,de-noising,fuzzy,degree of membership,triangle module operator
  • 相关文献

参考文献11

二级参考文献68

  • 1马振国,李鹏,赵保利,李和明.DVR电压波形跟踪无差拍控制方法[J].电力自动化设备,2005,25(3):13-17. 被引量:14
  • 2Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robots by learning.J.Robotic Systems, 1984, 1 (2):440 - 447.
  • 3Ahn HS, Choi C H, Kim K B. Iterative learning control for a class of nonlinear systems.Automatica, 1993, 29(6) : 1575- 1578.
  • 4Saab S. A discrete- time learning control algorithm for a class of linear time- invariant systems. IEEE Transactions on Automatic Control, 1995, 38 (1): 121--125.
  • 5Xu Jianxin, Direct learning of control efforts for trajectories with different time scales. IEEE Trans.on Automatic Control, 1998, 43 (7): 1027--1030.
  • 6Hunt K J. Neural networks for control systems- A survey. Automatica, 1992, 28 (6): 1083--1112.
  • 7Sanner R M and Eslotine J J. Gaussian networks for direct adaptive control. IEEE TNN. 1992, 3 (4) : 837--963.
  • 8DKarimi M, Mokhtari H, Iravani M R. Wavelet based on-line disturbance detection for power quality applications.IEEE Trans. on Power Delivery,2000.15 (4) : 1212-- 1220.
  • 9Yang H T, Liao C C. A de-noising scheme for enhancing wavelet-based power quality monitoring system. IEEE Trans. on Power Delivery, 2001, 16 (3): 353--359.
  • 10Donoho D L. De-noising by soft-thresholding. IEEE Trans. on Information Theory. 1995, 41 (3): 613--627.

共引文献237

同被引文献85

引证文献13

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部