摘要
A commercial CFD (computational fluid dynamics) code FLUENT was used and modified to model an atmospheric pressure argon arc in a low cross flow by solving the fully coupled conservation equations. Numerical experiments, with an arc current of 100 A to 200 A, an arcing distance of 3 mm to 6 mm, and a cross-flow velocity of 10 m/s to 30 m/s, were carried out. The modelling results show that the arc tends to take the shortest path to the anode when deflected by the cross flow; its anode attachment is farther downstream than the cathode one. Furthermore, due to the low input gas flow imposed in this study, the effect of electromagnetic force is important and it influences the crosscut shape of the arc significantly.
A commercial CFD (computational fluid dynamics) code FLUENT was used and modified to model an atmospheric pressure argon arc in a low cross flow by solving the fully coupled conservation equations. Numerical experiments, with an arc current of 100 A to 200 A, an arcing distance of 3 mm to 6 mm, and a cross-flow velocity of 10 m/s to 30 m/s, were carried out. The modelling results show that the arc tends to take the shortest path to the anode when deflected by the cross flow; its anode attachment is farther downstream than the cathode one. Furthermore, due to the low input gas flow imposed in this study, the effect of electromagnetic force is important and it influences the crosscut shape of the arc significantly.
基金
supported by National Natural Science Foundation of China (Nos.10375065,10675122)