期刊文献+

基于独立成分分析和小波变换处理两相流信号 被引量:1

Processing signals of two-phase flow based on independent component analysis (ICA) and wavelet transformation
下载PDF
导出
摘要 为克服噪声信号给速度测量带来的影响,提供了一种基于独立成分分析(ICA)和小波变换处理两相流信号的方法。首先介绍独立成分分析(ICA)的基本原理及其实现方法,并利用此方法对两相流信号进行处理;根据傅立叶变换确定信号的频谱;然后介绍小波变换和空间滤波的基本原理,并利用小波变换确定信号的带宽;并根据带宽求出固体速度。最后给出仿真实验结果。结果表明:这种方法可以满足固体速度测量的需要。 To overcome the noise effect on the velocity measurement, the essential method for processing two-phase flow signals is described based on independent component analysis (ICA) and wavelet transformation in this paper, Firstly the principle of independent component analysis (ICA) is presented and two-phase flow signals are processed with this method, Secondly the capacitance sensors frequency spectrum is gained by using Fourier transformation. Thirdly, the basic principles of wavelet transformation and spatial filter are introduced, The capacitance sensors width of pass-band is gained by wavelet transformation. Then solid velocity is obtained on the basis of width of pass-band. Finally simulation experiment results are given. The experimental results show that the method can satisfy the need of solid velocity measurement.
作者 吴新杰 许超
出处 《辽宁工程技术大学学报(自然科学版)》 EI CAS 北大核心 2007年第5期795-797,共3页 Journal of Liaoning Technical University (Natural Science)
基金 教育部留学回国人员科研启动基金资助项目(教外司留[2003]406) 辽宁省科学技术厅博士科研启动基金资助项目(20031027) 辽宁省教育厅攻关计划资助项目(202103184)
关键词 独立成分分析(ICA) 空间滤波 小波变换 速度 independent component analysis (ICA) spatial filter wavelet transform velocity
  • 相关文献

参考文献8

  • 1Yong Yan.Mass flow measurement of bulk solids in pneumatic pipelines[J].Meas.Sci.Technol.,1996(7):1687-1706.
  • 2James V.Stone.Independent component analysis:an introduction[J].Trends in Cognitive Sciences,2002,6 (2):59-64.
  • 3Christian Jutten,Jeanny Herault.Blind separation of sources,Part Ⅰ:an adaptive algorithm based on neuromimetic architecture[J].Signal Processing,1991,24 (1):1-10.
  • 4Stephane G.Matllat.A Theory for Multiresolution Signal Decomposition:The Wavelet Representation[J].IEEE Transactions on pattern analysis and machine intelligence,1989,11 (7):674-693.
  • 5郭显久,贾凤亭.基于小波多尺度乘积的信号去噪算法[J].辽宁工程技术大学学报(自然科学版),2005,24(5):723-726. 被引量:6
  • 6Hammer E A,Green R G.The spatial filtering effect of capacitance transducer electrodes[J].J.Phys.E:Sci.Instrum.,1983(16):438-443.
  • 7Yang W Q,Beck M S,Byars M.Electrical capacitance tomography-from design to applications[J].Measurement & Control,1995,28(9):261-266.
  • 8Huang S M,Plaskowski A B,Xie C G.,et al.Capacitance-based Tomographic flow imaging system[J].Electron.Lett.,1988,24(7):

二级参考文献11

  • 1Mallat S, Hwang W L. Singularity detection and processing with wavelet[J]. IEEE Trans on IT. 1992,38(2):617-643.
  • 2Zhang L, Ba P o. Edge detection by scale multiplication in wavelet domain[J]. Pattern Recognition Letters. 2002,(23): 1771 - 1784.
  • 3Donoho D L, I M Johnstone. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika. 1994, 81(12):425-455.
  • 4Donoho D L.De-noising by soft-thresholding[J]. IEEE Trans on IT.1995,41(3):613-627.
  • 5Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of American Stat Assoc.1995,12(90): 1200-1224.
  • 6Mallat S, Zhong S. Characterization of signals from multiscale edges [J].IEEE Trans on Pattn Anal Mach Intell. 1992,14(7):709-732.
  • 7谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报(A辑),2002,7(3):209-217. 被引量:254
  • 8柳薇,马争鸣.基于边缘检测的图象小波阈值去噪方法[J].中国图象图形学报(A辑),2002,7(8):788-793. 被引量:31
  • 9张小飞,徐大专,齐泽锋.基于模极大值小波域的去噪算法研究[J].数据采集与处理,2003,18(3):315-318. 被引量:25
  • 10南敬昌,谢国民,惠晓威.小波变换视频压缩编码技术研究[J].辽宁工程技术大学学报(自然科学版),2003,22(5):638-640. 被引量:2

共引文献5

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部