期刊文献+

基于SVM的集成预测方法及其在水电机组故障诊断中的应用

Support Vector Machine-based Integrated Prediction Method and Its Application to Fault Diagnosis for Hydrogenerator Units
下载PDF
导出
摘要 针对水力发电系统的非线性及非平稳性特点,提出一种基于小波变换和支持向量机(SVM)的集成预测方法,用于水电机组状态趋势分析。采用小波变换将非平稳时间序列分解成若干个具有较强规律性的子序列,然后采用合适核函数的最小二乘支持向量机(LS-SVM)方法分别对这些子序列进行预测,最后综合这些子序列的预测结果作为原始序列的预测值。将该集成方法应用于某水电机组振动峰峰值的预测,结果表明该集成方法的预测性能优于单一LS-SVM方法。 Considering the nonlinearity and unsteadiness of hydropower systems, an integrated prediction model based on wavelet transform and support vector machine (SVM) is proposed for the condition trend analysis of hydrogenerator units. Firstly, the unsteady time series are decomposed through wavelet transform into several sub-series with obvious tendency characteristics. Then, the trends of the sub-series are predicted respectively with least squares support vector machine (LS- SVM), in which the kernel functions are chosen appropriately. Finally, the prediction results are integrated as the prediction values of original time series. The integrated prediction model is applied to the peak-peak value of vibration time series of some hydrogenerator units. The results show that its prediction performance is better than that of single LS-SVM method.
出处 《水电自动化与大坝监测》 2007年第5期33-36,共4页 HYDROPOWER AUTOMATION AND DAM MONITORING
基金 国家自然科学基金资助项目(50579022 50539140) 高等学校博士学科点专项科研基金资助项目(20050487062)
关键词 水电机组 趋势分析 小波变换 最小二乘支持向量机 集成方法 hydrogenerator unit trend analysis wavelet transform least squares support vector machines (LS-SVM) integrated method
  • 相关文献

参考文献10

  • 1LI Weimin, LIU Jianwei, LE Jiajin, et al. The financial time series forecasting based on proposed ARMAGRNN model// Proceedings of 2005 International Conference on Machine Learning and Cybernetics: Vol 4, Aug 18-21, 2005, Guangzhou, China. Piscataway, NJ, USA: IEEE, 2005:2005-2009.
  • 2张显,王锡凡.短期电价预测综述[J].电力系统自动化,2006,30(3):92-101. 被引量:75
  • 3GEBRAEEL N, LAWLEY M, LIU R, et al. Residual life predictions from vibration-based degradation signals: a neural network approach. IEEE Transactions on Industrial Electronics, 2004, 51(3) : 694-700.
  • 4周利军,吴广宁,张星海,朱康.基于加权模糊度时间序列分析的大型变压器故障预报[J].电力系统自动化,2005,29(13):53-55. 被引量:9
  • 5许涛,贺仁睦,王鹏,徐东杰.基于输入空间压缩的短期负荷预测[J].电力系统自动化,2004,28(6):51-54. 被引量:18
  • 6KIM K J. Financial time series forecasting using support vector machines. Neurocomputing, 2003, 55(1-2) : 307- 319.
  • 7SUYKENS J A K, GESTEL T V, BRABANTER J D, et al. Least squares support vector machines. Singapore: World Scientific, 2002.
  • 8KENNEL M B, BROWN R, ABARBANEL H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction, Physical Review A: General Physics, 1992, 46 (6) 3404-3411.
  • 9KEERTHI S S, LIN C J. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 2003, 15(7): 1667-1689.
  • 10LIN H T, LIN C J. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods[EB/OL]. [2003-03]. http://www.csie. ntu. edu. tw/-cjlin/papers/tanh.pdf.

二级参考文献75

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部