期刊文献+

散装仓粮食数量识别关键——矩形标尺图像识别 被引量:12

Key of bulk warehouse grain quantity recognition——Rectangular benchmark image recognition
下载PDF
导出
摘要 根据散装粮仓粮食数量识别要求,以场景视频图为识别对象,对通过边缘检测得到的差分结果进行迭代分析,得到对象边界.基于与识别目标相吻合的梯度算子的区域迭代阈值进行图像特征二次提取,利用模糊识别隶属度函数进行矩形标尺判断,有效地提高了识别算法的抗干扰性、鲁棒性、识别精度和效率,并用Visual C++实现了该识别算法.该方法为杜绝粮食储备管理中的弊端,提供了一种粮食储备的智能稽核方法. According to the requests of bulk warehouse grain quantity recognition, the scene video was taken as the identified object to obtain the object's boundary from the result of edge detection difference iterative analysis, The region iterative threshold value of the gradient operator fitting closely with the identified target was used to execute the picture characteristic second-extraction, then rectangular benchmark judgment using the membership functions of fuzzy recognition was carried out, and finally this recognition algorithm was realized by adopting Visual C++. Experimental results showed that this recognition algorithm effectively enhances the anti-jamming capability, robustness, recognition precision and efficiency. This work provides a grain reserving intelligent audit method for eliminating the shortcomings in grain reserving management.
作者 林鹰 付洋
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第10期1643-1646,共4页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60603027) 重庆市财政局重点科技资助项目(2007)
关键词 边缘检测差分 模糊识别 隶属度函数 迭代分析 edge detection difference fuzzy recognition membership function iterative analysis
  • 相关文献

参考文献4

二级参考文献13

  • 1谭明金,刘凯.一种用区域直方图表示与描述形状的方法[J].中国图象图形学报(A辑),2004,9(7):804-809. 被引量:2
  • 2贾云得.机器视觉[M].北京:科学出版社,2001..
  • 3Bribiesea E, Wilson R G. A Measure of 2D Shape-of-Object Dissimilarity. Applied Mathematics Letters, 1997, 10(6): 107-115
  • 4Felzenszwalb P F. Representation and Detection of Deformable Shapes. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(2): 208-220
  • 5Dai X L, Khorram S. A Feature-Based Image Registration Algorithm Using Improved Chain Code Representation Combined with Invariant Moments. IEEE Trans on Geoseienees and Remote Sensing, 1999, 37(5): 2351-2362
  • 6Kauppinen H, Seppanen T, Pietikainen M. An Experimental Comparison of Autoregressive and Fourier-Based Descriptors in 2D Shape Classification. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17(2): 201-207
  • 7Mehtre B M, Kankanhalli M S, Lee W F. Shape Measures for Content Based Image Retrieval: A Comparison. Information Processing and Management, 1997, 33(3): 319-337
  • 8Kunttu I, Lepisto L, J Rauhamaa, et al. Muhiscale Fourier Descriptor for Shape Classification//Proc of the 12th International Conference on Image Analysis and Processing. Mantova, Italy, 2003: 536-541
  • 9Persoon E, Fu K. Shape Discrimination Using Fourier Descriptors. IEEE Trans on Pattern Analysis and Machine Intelligence, 1986, 8(3): 388-397
  • 10Park H J, Ji M S, Ha J T, et al. Shape Matching Using the Modified Histogram-Based Chain Code. Proc of SPIE, 2004, 5283:114-121

共引文献9

同被引文献108

引证文献12

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部