期刊文献+

组播最优QoS划分问题及其混合遗传算法

Multicast Optimal QoS Partition Problem and its Hybrid Genetic Algorithm
下载PDF
导出
摘要 最优QoS划分研究基于性能的价格体系下的资源分配问题,组播最优QoS划分(MOPQ)是将组播树上端到端QoS要求划分到本地链路,使得总代价最小。研究了求解MOPQ问题的遗传算法,设计了由树代价与叶结点惩罚因子构成的适应度函数,提出了双子群混合遗传算法。该算法充分利用了遗传算法的全局搜索优势,模拟退火算法的局部搜索优势以及双子群的协作优势。仿真结果表明该算法的有效性。 Optimal QoS partition is a problem of optimal resource allocation in the context of performance dependent cost. Multicast optimal QoS Partition (MOPQ) is how to partition the end-to-end QoS requirements of a tree into local requirements, such that the overall cost is minimized. GA algorithms for MOPQ problems were studied, a fitness function based on tree cost and leaf nodes punish factor was designed, and a dual subpopulation hybrid genetic algorithm was proposed. This algorithm took advantage of GA's global search ability and simulated annealing algorithm's local search ability. Subpopulations cooperation further improves performance. Simulation results prove this algorithm's efficiency.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第20期4731-4733,4843,共4页 Journal of System Simulation
基金 国家自然科学基金(60472064)
关键词 组播 QoS划分 混合遗传算法 模拟退火 multicast QoS partition hybrid genetic algorithm simulated annealing
  • 相关文献

参考文献10

  • 1S Blake.RFC No.2475,An Architecture for Differentiated Services[S].Internet Engineering Task Force,1998.
  • 2Ergün F,Sinha R,Zhang L.QoS Routing with Performance Dependent Costs[C]// Proceedings of the IEEE INFOCOM 2000,Tel-Aviv,Israel:IEEE Communication Society,2000:1234-1241.
  • 3Raz D,Shavitt Y.Optimal Partition of QoS Requirements with Discrete Cost Functions[C]// Proceedings of the IEEE INFOCOM 2000.Tel-Aviv,Israel:IEEE Communication Society,2000:613-622.
  • 4Lorenz D H,Orda A.Optimal Partition of QoS Requirements on Unicast Paths and Multicast Trees[J].IEEE/ACM Transactions on Networking (S1063-6692),2002,10(2):102-114.
  • 5Orda A,Sprintson A.A Scalable Approach to the Partition of QoS Requirements in Unicast and Multicast[C]// Proceedings of the IEEE INFOCOM 2002.New York,USA:IEEE Communication Society,2002:685-694.
  • 6Lorenz D H,Orda A,Raz D,et al.Efficient QoS Partition and Routing of Unicast and Multicast[C]// Proceedings of the 8th International Workshop on Quality of Service (IWQoS 2000).Pittsburgh,PA:IEEE Communications Society,2000:75-83.
  • 7Atov I,Tran H T,Harris R J.Efficient QoS Partition and Routing in Multiservice IP Networks[C]// Proceedings of the 22th IEEE International Performance Computing and Communications Conference(IPCCC 2003).Phoenix,Arizona:IEEE Computer Society,2003:435-441.
  • 8陈国良,王煦法,庄镇泉.遗传算法以及应用【M】.北京:人民邮电出版社,1996.
  • 9何大阔,王福利,毛志忠.遗传算法在离散变量优化问题中的应用研究[J].系统仿真学报,2006,18(5):1154-1156. 被引量:11
  • 10邢立宁,陈英武,蔡怀平,陶凤源.求解全局优化问题的智能遗传算法[J].系统仿真学报,2006,18(4):1067-1069. 被引量:10

二级参考文献20

  • 1朱朝艳,刘斌,郭鹏飞.离散变量结构优化设计的复合形遗传算法[J].东北大学学报(自然科学版),2004,25(7):689-691. 被引量:9
  • 2Tai Q,Liu X,Xue M H A.Dynamic genetic algorithm based on continuous neural networks for a kind of non-convex optimization problems[J].Applied Mathematics and Computation(S0096-3003),2004,150(3):811-820.
  • 3Juidette H,Youlal H.Fuzzy dynamic path planning using genetic algorithms[J].Electronics Letters (S0013-5194),2000,36(4):374-376.
  • 4Saleh H A,Chelouah R.The design of the global navigation satellite system surveying networks using genetic algorithms[J].Engineering Applications of Artificial Intelligence (S0952-1976),2004,17(1):111-122.
  • 5Lyer,Srikanth K,Saxena,Barkha.Improved genetic algorithm for the permutation flowshop scheduling problem[J].Computer and Operations Research (S0305-0548),2004,31(4):593-606.
  • 6Chai S,Sun HC.A relative difference quotient algorithm for discrete optimization[J].Structural Optimization (S0934-4373),1996,12(1):46-56.
  • 7Bland J A.Discrete-variable optimal structural design using Tabu search[J].Structural Optimization(S0934-4373),1995,10:87-93.
  • 8Krishnamoorthy R S.Discrete optimization of structures using genetic algorithm[J].Journal of Structural Engineering (S0733-9445),1999,12(2):175-184.
  • 9Yiu-Wing Leung,Yuping Wang.An orthogonal genetic algorithm with quantization for global numerical optimization[J].IEEE transaction on evolutionary computation (S1089-778X).2001,5(1):41-53.
  • 10郭立新,武丽梅,李庆忠,李波,张国忠.一种基于多峰值多规则并行搜索的遗传算法[J].机械科学与技术,1999,18(3):406-408. 被引量:4

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部