摘要
设(Ω,F)是一个可测空间,f:Ω→S是一个映射.周知,若f满足双射条件,则f(F)构成S上的一个σ-代数.本文利用(Ω,F)的原子获得了一个比双射条件严格弱的新条件,在此新条件下f(F)仍然构成S上的一个σ-代数,此外还利用所获定理给出了一个已知结果的非常简洁的证明.
Let (Ω,F) be a measurable space and f:Ω →S a map to S. It is well known that f(F) forms a sigma - algebra over S if f satisfies the bijective condition. In this note, by using the atoms in (Ω ,F), the authors found a weaker condition under which f(F) forms a sigma - algebra over S . In addition, as an application of the main result, a very simple proof of a known theorem was presented.
出处
《佳木斯大学学报(自然科学版)》
CAS
2007年第5期671-672,共2页
Journal of Jiamusi University:Natural Science Edition