期刊文献+

一种基于正则化方法的SAR图像边缘检测算法 被引量:2

Edge Detection in SAR Segmentation Based on Regularization Method
下载PDF
导出
摘要 提出了一种基于正则化方法的SAR图像边缘检测算法,并用MSTAR(moving and stationary target acquisitions and recognition)数据进行大量的仿真实验。实验表明,与经典的边缘检测方法相比,该方法能保持图像的细节特征,较好地解决了边缘断裂和抗噪问题,具有较好的边缘检测能力。 Clear and continuous edge feature is important to analyze and interpret SAR images. A new edge detection of SAR images is presented by analyzing regularization method. There are three steps. Firstly, using a modified regularization method reduce the speckle noise. Then, a statistical method is proposed to segment the target of interest. At last, edge detection is realized by a window method. Compared with traditional methods, experimental results with MSTAR dataset show that this method can maintain detail feature, resolve the broken edge and decrease noise efficiently. This algorithm has wonderful edge-detection performance.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2007年第10期864-867,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(60541001) 全国优秀博士论文作者专项基金资助项目(200443)
关键词 SAR图像 正则化 边缘检测 SAR images regularization method edge detection
  • 相关文献

参考文献5

二级参考文献33

  • 1赵侠,王正明,汪雄良,朱炬波.复图像域正则化特征增强SAR成像方法[J].系统工程与电子技术,2004,26(8):1044-1048. 被引量:3
  • 2周宏潮,朱炬波,王正明.SAR图像增强的前向-后向扩散方程方法[J].电子学报,2004,32(12):2070-2073. 被引量:6
  • 3王怀野,张科,李言俊.各向异性滤波在红外图像处理中的应用[J].红外与毫米波学报,2005,24(2):109-113. 被引量:24
  • 4洪汉玉,张天序,余国亮.航天湍流退化图像的极大似然估计规整化复原算法[J].红外与毫米波学报,2005,24(2):130-134. 被引量:24
  • 5SimonHaykin[美].自适应滤波器原理(第三版) [M].北京:电子工业出版社,1998..
  • 6章毓晋.图像工程上册——图像处理和分析[M]:第八章和附录[M].北京:清华大学出版社,1999..
  • 7M Cetin, William C Karl. A statistical tomographic approach to synthetic aperture radar image reconstruction[A].Proc ICIP[C]. Santa Barbara, CA: ICIP, 1997,1:845 - 848.
  • 8Pierre Charbonnier,Laure Blanc-Reraud,et al.Deterministic edge-preserving regularization in computed imaging[J],IEEE Trans Image Processing, 1997,6.298 - 311.
  • 9M Cetin, William C Karl. Superresolution and edge-preserving reconstruction of complex-valued synthetic aperture radar images [ A ]. Proc ICIP [ C]. Vancouver, Canada: ICIP,2000,1:701 - 704.
  • 10D C Munson Jr,J D O' Brein,W K Jenkins,A tomographic formulation of spot-light synthetic aperture radar[J],Proc IEEE, 1983,71:917 -925.

共引文献39

同被引文献24

  • 1胡鹏,傅仲良,陈楠.利用灰色理论进行图像边缘检测[J].武汉大学学报(信息科学版),2006,31(5):411-414. 被引量:21
  • 2陈渤,刘宏伟,保铮,曹雪菲.一种针对雷达高分辨距离像识别的融合核优化算法[J].电子学报,2006,34(6):1146-1151. 被引量:10
  • 3Yeung D Y, Chang Hong, Dai Guang. Learning the Kernel Matrix by Maximizing a KFD-based Class Separability Criterion [J]. Pattern Recognition, 2007, 40:2021-2028.
  • 4Cristianinni N, Kandola J, Elisseeff A, et al. On Kernel Target Alignment [C]. Neural Information Processing Systems (NIPS'01), Cambridge, 2001.
  • 5Zhang Daoqiang, Chen Songcan, Zhou Zhihua. Learning the Kernel Parameters in Kernel Minimum Distance Classifer[J]. Pattern Recognition, 2006, 39(1) :133-135.
  • 6Yang Yingxu. Adaptive Credit Scoring with Kernel I.earning Methods[J]. European Journal of Operational Research, 2007, 183:1 521-1 536.
  • 7Shawetalyor J, Cristianini N. Kernel Methods for Pattern Analysis[M]. Cambridge: Cambridge University Press,2004:98-102.
  • 8Bach F R, Lanckriet G R G, Jordan M I. Multiple Kernel Learning, Conic Duality, and the SMO Algorithm[C]. The 21st International Conference on Machine learning. Banff, Canada, 2004.
  • 9Ong C S, Smola A J, CWilliamson R C. Learning the Kernel with Hyper kernels[J]. J Mach Learn, 2003(3) :1 001-1 030.
  • 10Sollich P. Bayesian Methods for Support Vector Machines: Evidence and Predictive Class Probabilities[J]. Machine Learning, 2002, 46(1 3):21-52.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部