期刊文献+

基于神经网络和证据理论集成的钻井过程状态监测与故障诊断 被引量:11

Drilling state monitoring and fault diagnosis based on integrating neural network and evidence theory
下载PDF
导出
摘要 钻井过程状态监测与故障诊断是钻井系统安全运行过程中的重要保障。基于信息融合原理,先建立钻井过程参数子空间和子神经网络进行初级融合,形成对钻井故障辨识框架中各故障模式的证据支持,再利用D-S证据理论将子网络输出所形成的证据进行融合,得到各故障模式的置信区间,很好地实现了钻井状态识别。试验结果表明,基于神经网络和证据理论集成的融合算法降低了神经网络的复杂性,提高了神经网络诊断过程的效率,集成融合算法可以很好地提高钻井参数融合的准确性。 State monitoring and fault diagnosis of drilling process is the significant support for safe working of drilling system. Based on information fusion theory, parameter subspace about drilling process parameters and neural subnet for primary fusion was firstly established: So the evidence supporting for different fault mode in drilling fault frames of discernment can be obtained. Then by using D-S evidence theory, the confidence interval of fault diagnosing results was improved by fusing the evidence body that was outputted by neural subnet, the status of drilling process was identified very well. The experimental results show that the complexity of neural network can be decreased and the efficiency of neural network can be improved by the fusion arithmetic of integrating neural network and evidence theory, the veracity about drilling parameters can be improved by fusing integrating fusion arithmetic.
作者 廖明燕
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第5期136-140,共5页 Journal of China University of Petroleum(Edition of Natural Science)
关键词 钻井 状态监测 故障诊断 神经网络 证据理论 drilling state monitoring fault diagnosis neural network evidence theory
  • 相关文献

参考文献4

二级参考文献26

  • 1于润桥.卡钻事故预测技术研究[J].石油钻探技术,1996,24(2):15-17. 被引量:7
  • 2张山鹰.证据推理及其在目标识别中的应用:学位论文[M].西北工业大学,1999..
  • 3张鹰山,控制与决策,2000年,15卷,5期,540页
  • 4张山鹰,学位论文,1999年
  • 5丛爽.MATLAB工具箱的神经网络理论与应用(第二版)[M].合肥:中国科学技术大学出版社,2003.05:55—87.
  • 6张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1992.43-60.
  • 7Klein L A.Sensor and Data Fusion Concepts and Applications[J].SPJE,1999,135:95-107.
  • 8Waltz E,Linas J.Multisenor Data Fusion[M].Artech House,Norwood.MA,1990.
  • 9HARRIS Chris J,GAN Qiang.State estimation and multisensor data fusion using data-based neurofuzzy local linearization process models[J].Information Fusion,2001(2):17-29.
  • 10Torella G,Torella R.Probabilistic expert system for the diagnostics and trouble-shooting of gas turbine apparat uses[R].AIAA 99-2842,1999.

共引文献91

同被引文献100

引证文献11

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部