期刊文献+

基于小波神经网络的自适应控制器设计 被引量:3

Design of adaptive controller based on wavelet neural network
下载PDF
导出
摘要 针对一类未知非线性系统,设计了一种基于小波神经网络的自适应控制器,并提出了一种适合在线学习的参数混合训练算法。根据离线和在线学习系统的特性,得到小波神经网络控制器的初始参数,使用混合训练算法在线修正控制律,实现了自适应控制。仿真结果验证了该控制方案的有效性。 An adaptive controller based on wavelet neural network was designed for a class of unknown nonlinear system. And a mixed training algorithm suitable for online parameter adjusting was presented. By learning offline and online characteristics of the system, the initial parameters of wavelet neural network controller were obtained. The control law online for adaptive control can be modified by the mixed training algorithm. The simulation results demonstrate the validity of proposed controller.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第5期141-143,147,共4页 Journal of China University of Petroleum(Edition of Natural Science)
基金 国家'973'项目(2004CB31800)
关键词 小波神经网络 自适应控制器 在线学习算法 wavelet neural network adaptive controller online learning algorithm
  • 相关文献

参考文献7

二级参考文献35

  • 1朱全民.非线性系统辨识[J].控制理论与应用,1994,11(6):641-652. 被引量:18
  • 2秦前清 杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1998..
  • 3[1]Zhang Qinghua,Bmven1ste A.Wavelet Networks[J].IEEE Trans.On Ne11ml Networks.1992,3(6):889~898
  • 4[4]J R Hull,et al.A Neural Network Algorithm using wavelets and Auto Regressive Inputs for SySten Identification of the 1997[J].IEEE International Conference on Networks,1997,2(4):724~727
  • 5[6]Pati Y C,Krishnaprasad P S.Analysis and syntaesis of feedforward neural networkusing discrete affine wavelet[J].IEEE trans on NN,1993,4(1):73~75
  • 6[7]Szu H H,et al.Neural Network adaptive Wavelets for Signal representation and classification[M].Optical Engineering.1992,31(9)2907~1016
  • 7[11]Zhang Qinghua.Using Wavelet Neural in nonparamationestimation[J].IEEE.Trans on Neural Networks.1997,8(2):227~236
  • 8[15]金龙等.基于小波神经网路的长期预报研究[R].南京:CCNS'97(二),1997,617~620
  • 9曾凡锋,蔡自兴.基于小波神经网络的非线性系统辨识[J].控制理论与应用,1998,15(4):494-500.
  • 10Chen S,Int J Control,1989年,49卷,1013页

共引文献32

同被引文献42

  • 1刘洋,王典,刘财.数学变换方法在地震勘探中的应用[J].吉林大学学报(地球科学版),2005,35(S1):1-8. 被引量:9
  • 2邵红梅,吴微,李峰.CONVERGENCE OF ONLINE GRADIENT METHOD WITH A PENALTY TERM FOR FEEDFORWARD NEURAL NETWORKS WITH STOCHASTIC INPUTS[J].Numerical Mathematics A Journal of Chinese Universities(English Series),2005,14(1):87-96. 被引量:3
  • 3李伟,陈国明,郑贤斌.基于广义回归神经网络的交流电磁场检测裂纹量化研究[J].中国石油大学学报(自然科学版),2007,31(2):105-109. 被引量:9
  • 4WU W, FENG G R, LI X. Training muhilayer perceptrons via minimization of sum of ridge functions[ J ]. Ad- vances in Computational Mathematics, 2002, 17: 331- 347.
  • 5HAGANMT,DEMUTHHB,BEALEM.神经网络设计[M].戴葵,宋辉,谭明峰,等,译.北京:机械工业出版社,2003.
  • 6RUMELHART D E, MCCLELLAND J L, PDP Research Group. Parallel distributed processing-explorations in the microstructure of cognition[ M ]. Cambridge: MIT Press, 1986 : 320-340.
  • 7JACOBS R A. Increased rates of convergence through learning rate adaptation [ J ]. Neural Networks, 1988,1 (4) : 295-307.
  • 8MAGOULAS G D. Effective neural network training with a different learning rate for each weight: The 6th IEEE International Conference on Electronics, Circuits and Systems, Pafos, Cyprus, 5-8 September, 1999 [ C]. Cyprus : IEEE, c1999:591-594.
  • 9ARMIJO L. Minimization of function having Lipschitz continuouse first partial derivatives [ J ]. Pacific Journal of Mathematics, 1966,16( 1 ) : 1-3.
  • 10CHAN L W, FALLSIDE F. An adaptive training algorithm for back-propagation networks [ J ]. Computer Speech and Language, 1987 (2) :205-218.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部