期刊文献+

一种基于矢量阈值的自适应图像分割方法 被引量:1

A Self-adaptive Method of Image Segmentation Based on Vector Threshold
下载PDF
导出
摘要 针对灰度图像,提出一种基于空间特征矢量的图像分割方法,分割前首先对边缘进行增强处理,并构建以像素的灰度、梯度、像素邻域均值为特征的三维特征空间.将图像像素点引入对应于空间特征点.通过计算像素特征矢量与特征矢量阈值的差矢量,求出矢量差与特征矢量阈值的夹角,比较夹角与动态分割参数的关系,以判定像素所在区域(目标或背景).实验表明,该方法能较快的实现图像分割,分割的效果也较好. As to the gray image, a new method of image segmentation based on space feature vector is presented. Its procedures are mainly divided into three steps. Firstly, Edge is strengthened before image segmentation, and a feature space with three dimensions based on gray, gradient, pixels neighborhood is constructed in advance. Ever pixels in image is related to a feature point in the space. Edge is strengthened before segmentation. Secondly, computing the vector differences between feature vector and feature threshold vector, and the angle between difference vector and feature vector threshold can be obtained. Finally, comparing its angle with segmentation parameter one, the region ( target or background) of pixels can be determined. According to experimental results, it is an effective and accurate method in image segmentation .
出处 《昆明理工大学学报(理工版)》 2007年第5期23-26,共4页 Journal of Kunming University of Science and Technology(Natural Science Edition)
基金 江苏省计算机信息处理技术重点实验室开放课题基金资助项目(KJS0601) 江苏省"青蓝工程"资助
关键词 图像分割 直方图 灰度图像 image segmentation histogram grey inmage
  • 相关文献

参考文献8

二级参考文献44

  • 1[1]Pal N R,Pal S K.A Review on Image Segmentation Techniques[J].Pattern Recognition,1993,26(9):1277-1294.
  • 2[2]Bhanu B,Lee S,Ming J.Alaptive Image Segmentation Using a Genetic Algorithm[J].IEEE Trans.on System,Man,and Cybernetics,1995,5(12):1543-1565.
  • 3[3]Doyle W.Operation Useful for Similarity-Invariant Pattern Recognition[J].J.Asssoc.Comput.Mach.,1962,9:259-267.
  • 4[4]Lee S,Chung S.A Comparative Performance Study of Several Global Thresholding Techniques for Segmentation[J].Computer Vision,Graphics,and Image Processing,1990,52:171-190.
  • 5[5]Ostu N A.Threshold Selection Method from Gray-Level Histograms[J].IEEE Trans.on System,Man,and Cybernetics,1979,9(1):62-66.
  • 6[6]Tsai W H.Moment-Preserving Thresholding:A New Approach[J].Computer Vision,Graphics,and Image Processing,1985,29:377-393.
  • 7[7]Kittler J,Illingworth J.Minimum Error Thresholding[J].Pattern Recognition,1986,19:41-47.
  • 8[8]Cho S,Haralick R,Yi S.Improvement of Kittler and Illingworth's Minimum Error Thresholding[J].Pattern Recognition,1989,22:609-617.
  • 9[9]Rosenfeld A,De La Torre P.Histgram Concavity Analysis as an Aid in Threshold Selection[J].IEEE Trans.on Systems,Man and Cybernetics,1983,SMC-13:231-235.
  • 10[10]Pun T.A New Method for Gray-Level Picture Thresholding Using the Entroy of the Histgran[J].Signal Processing,1980,2:223-237.

共引文献759

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部