期刊文献+

夹杂物干涉效应的实验研究 被引量:1

An Experimental Study on the Interference Mechanism of Multi-inclusion
下载PDF
导出
摘要 利用自主开发的数字全息干涉测量系统针对同类型夹杂物间的干涉效应开展研究.实验获得了较为满意的数字全息干涉图.通过对不同构型的圆孔、椭圆孔和裂纹在同样相当距离下发生的干涉情况的分析、比较可以发现:多夹杂物间均存在不同程度的增强干涉效应或屏蔽干涉效应;在孔洞之间的增强干涉区存在明显的梯度应变条带;当距离不是很近时,裂纹之间的增强干涉效应主要是在裂纹之间形成高应力应变区,改变裂纹的扩展路径,推动裂纹之间的串接. The interference among the same kind inclusions has been studied with the help of the digital holographic interferometry system. The satisfactory holographic interferograms are obtained by this system. It can be concluded from the interferograms for the circular holes, elliptical holes and cracks at the same equivalent distance that the different amplification effect or shielding effect are always existent among the different inclusions. There exist gradient strain stripes obviously among the holes. When the distance among cracks is not very close, the amplification effect among cracks will mainly lead to high strain field, vary the propagation path of crack and propel the connection among cracks.
出处 《昆明理工大学学报(理工版)》 2007年第5期68-72,共5页 Journal of Kunming University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金项目(项目编号:10462002) 云南省应用基础计划项目(项目编号:2004A0011M 2006A0002Z 2005py01-38)
关键词 数字全息 夹杂物 干涉效应 全息干涉 digital holographic inclusion interference holographic interferometry
  • 相关文献

参考文献11

  • 1张宏图,折晓黎.夹杂理论及其在断裂研究中的应用[J].物理学报,1981,32(6):761-774. 被引量:4
  • 2王锐.裂纹与夹杂物的互作用[J].物理学报,1990,39(12):1908-1914. 被引量:1
  • 3Chudnovsky A, KACHANOV M. Interaction of a Crack with a field of microcracks[ J]. Int J Engng Sci, 1983 21, 1009 -1018.
  • 4MARK KACHANOV, ERIC MONTAGUT. Interaction of a Crack with Certain Microcrack Arrays[ J]. Engng Fracture Mech, 1986, 25,625 - 636.
  • 5Horii H, Nemat - Nasser S. Elastic Fields of Interaction inhomogeneities[J]. Int J Solids Structures, 1985, 21:731-745.
  • 6San - Xia Gong, H. Horii. General solutions to the problems of microcracks near the tip of a main crack [ J ]. J Mech Phys Solids, 1989, 37:27 - 46.
  • 7Sternberg E, Sadowsky M A. On the Axisymmetric Problem of the Theory of Elasticity for an Infinite Region Containing Two Spherical Cavities [ J ]. J Appl Mech 1952,19:19 - 27.
  • 8郭荣鑫,Gerard LORMAND,李俊昌.夹杂物问题应力场的数值计算[J].昆明理工大学学报(理工版),2004,29(3):51-55. 被引量:7
  • 9GUO Rongxin, Li Junchang. Gerard LORMAND, Interaction of multiple inhomogeneities, Environment Effects on Fracture and Damage ( Proceeding of the FM2004), G C. Sih, S.T. Tu [ R ], Zhejiang University Press Hangzhou, China, 2004: 131 - 136.
  • 10张讯,李金瀛,黄镇屏.裂纹群干扰效应的光弹性法测定[J].华北电力学院学报,1995,22(4):75-79. 被引量:2

二级参考文献8

  • 1Sternberg E, Sadowsky M A. On the Axisymmetric Problem of the Theory of Elasticity for an Infinite Region Containing Two Spherical Cavities[J]. J. Appl. Mech. 1952,19:19-27.
  • 2Arnaud Riccardi. Theoretic Study on the Nonclassical Inclusion Configuration in the Linear Elastic Isotrope[M]. National Polytechnic Institute of Grenoble. Dissertation for the Ph.D. 1998.75-77.
  • 3Eshelby J D. The Determination of the Elastic Field of an Ellipsoidal inClusion and Related Problems[J]. Proc. Roy. Soc. 1957, A241, 376-396.
  • 4Eshelby J D. The Elastic Field Outside an Ellipsoidal Inclusion[J]. Proc. Roy. Soc. 1959. A252, 561-569.
  • 5Zissis A. Moschovidis. Two Ellipsoidal Inhomogeneities and Related Problems Treated by the Equivalent Inclusion Method[M]. Northwestern University, Ph.D. Dissertation, 1975.15-114.
  • 6HertzbergRW 王克仁 罗力更 译.工程材料的变形与断裂[M].北京:机械工业出版社,1982.260-262.
  • 7曹宝宏,物理学报,1986年,35卷,750页
  • 8折晓黎,物理学报,1983年,32卷,182页

共引文献9

同被引文献16

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部