期刊文献+

基于粒子群算法和FLAC的洞室围岩参数反分析 被引量:4

Back-Analysis of Mechanics Parameters of Surrounding Rock of Cave based on PSO and FLAC
下载PDF
导出
摘要 围岩参数优化反分析需要多次正向计算,计算效率较低;优化程序与正向数值计算程序耦合需要大量开发工作。针对这些问题,将收敛快速的全局优化算法——粒子群算法和FLAC数值方法相结合,提出一种新的围岩参数识别方法,探讨该方法的原理和流程,并利用FLAC3D的内嵌语言——FISH编写程序。算例证明该方法收敛快速,分析精度高,是一种围岩参数识别的好方法。 The back- analysis of mechanics parameters of surrounding rock of cave needs forward calculating again and again, resulting in low efficiency, and the development work of coupling the optimizing code and forward numerical simulation code is very much. In order to solve these problems, a new method for the back - analysis of mechanics parameters of su^ounding rock of cave was proposed by combining particle swarm optimization algorithm and FLAC numerical simulation analysis. The theory and calculating flow of the method are discussed, and the computing program is developed using FISH, embedded language of FLAC^3D. A computation example .proves that this method has rapid convergence and high precision.
出处 《矿业研究与开发》 CAS 北大核心 2007年第5期33-35,共3页 Mining Research and Development
基金 国家自然科学青年基金(50508007)
关键词 地下工程 粒子群算法 FLAC 反分析 Underground engineering, Particle swarm optimization, FLAC, Back analysis
  • 相关文献

参考文献1

  • 1Eberhart R C, Kennedy J. A New Optimizer Using Particles Swarm Theory [ A ]. Sixth International Symposium on Micro Machine and Human Science [ C ]. Nagoya, Japan: Piseataway, NJ : IEEE Service Center, 1995:39-43.

同被引文献50

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部