摘要
运用场匹配法,提出一种可求解包含电子束的任意轴对称周期慢波结构TM0n模色散曲线的数值方法;该方法具备较强的通用性和推广性,对设计具有周期性慢波结构的契仑柯夫类高功率微波源器件,有着重要的指导性意义。采用该方法编制了计算波纹波导和盘荷波导色散曲线的M atlab程序,以算例的形式验证了本数值算法的可靠性,计算出的冷腔色散曲线结果与多维全电磁模拟软件的模拟结果作了比对,二者相对误差在1%之内,计算结果准确可靠。由于采用了数值积分算法,在计算波纹波导色散曲线时,该方法与Bessel函数泰勒级数展开法相比具有计算速度快的优点。
A numerical method is put forward by using Field-Matching, which has advantages of an universal and extendable characteristic in numerical computing TMOn dispersion curves in an arbitrary axial symmetric periodic SWS (Slow- Wave Structure) including an electron beam; This method is instructional in Cherenkov HPM (High Power Microwave) source design; As examples, the dispersion curves of a sinusoidal ripple waveguide and a disk-loaded waveguide are computed by programming Matlab codes, the numerical results (not including an electron beam) have 1% deviations compared with the simulated results of a multidimensional full electromagnetic software ; this method has a faster computation speed than a traditional method in which Bessel function is expressed into Taylor series when computing dispersion curves in a sinusoidal ripple waveguide, because of using numerical integral method.
出处
《微波学报》
CSCD
北大核心
2007年第5期53-58,共6页
Journal of Microwaves
基金
中国工程物理研究院科学技术基金(2005Z0403)
国家自然科学基金(10705006)
关键词
数值算法
高功率微波
慢波结构
色散曲线
场匹配
Numerical method, HPM (High Power Microwave), SWS (Slow-Wave Structure), Dispersion curves
Field-matching