期刊文献+

含高阶余项的非线性动力系统数值计算法 被引量:1

A high-precision numerical method for non-linear dynamic systems
下载PDF
导出
摘要 建立了一种求解非线性动力系统高精度数值计算的新方法,重构了等价的非线性动力系统方程,该方程考虑了非线性函数的任意高阶项,并给出了该方程的Duhamel积分表达式,在时间步长内用Newton-Raphson法进行数值迭代求解,该方法能连续满足微分方程而不只是在离散的步长端点满足方程,从而打破了传统的Euler型有限差分法。计算实例表明,该方法计算精度高于传统的Runge-Kutta,Newmark-β和Wilson-θ等方法。  A new high-precision numerical arithmetic for solving the non-linear dynamic system is proposed.The ordinary nonlinear dynamic equation is reconstructed,and the new equivalent equation taining arbitrary high order remainder.The arithmetic presents Duhamel integration expression,using Newton-Raphson iterative arithmetic to seek the numerical solution,satisfying the differential equation continuously rather than at discrete spots,therefore,the arithmetic exceeds the traditional Euler finite differential method.Compared with the traditional method,such as Runge-Kutta method,Newmark-β method and Wilson-θ et al.,the calculation precision of this method is much higher.
出处 《计算力学学报》 CAS CSCD 北大核心 2007年第5期555-559,共5页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(598335050)资助项目
关键词 非线性动力系统 高阶余项 Duhamel积分 Newton-Raphson法 non-linear dynamic systems high-order remainder duhamel integration Newton-Raphson method
  • 相关文献

参考文献8

  • 1NEWMARK N M. A method of computation for structural dynamic[J].Journal of Engineering Mechanics Division ,ASCE, 1959,85:67-94.
  • 2WILSON E L, FARHOOMAND I, BATHE K J. Nonlinear dynamic analysis of complex structure[J]. Journal of Earthquake Engineering and Structural Dynamics, 1973,1 : 241-252.
  • 3HOUBOUT J C. A recurrence matrix solution for the dynamic response of elastic aircraft[J]. Journal of Aeronautical Science, 1950,17 :549-550.
  • 4HILBER H M, HUGHES T J R. Collocation, dissipation and overshoot for time integration schemes in structural dynamoics[J]. Journal of Earthquake Engineering and Structural Dynamics, 1978,6 : 99- 117.
  • 5ZIENKIEWIEZ O C. A new look at the newmark,houblt and other time steeping formulas, a weighted residual approach[J]. Journal of Earthquake Engineering and Structural Dynamics, 1977,5:413-418.
  • 6ZHENG Z C.Dynamic analysis of nonlinear systems by modal synthesis techniques[J]. Applied Mathematics and Mechanics, 1983,4(4) : 563-572.
  • 7WOOD W L. Practical Time-steeping Schemes[M]. Oxford: Clarendon Press, 1990.
  • 8苏志霄,郑兆昌,高永毅.非线性动力系统线性模型数值计算的Taylor变换法[J].力学学报,2002,34(4):586-593. 被引量:7

二级参考文献3

  • 1苏志霄.多点啮合柔性支承传动系统的动力学行为、结构参数识别及疲劳特性研究:[博士学位论文].西安:西安理工大学,1999..
  • 2徐健学 江俊.强迫范德波振子中的分岔和混沌.第十七届国际理论和应用力学大会中国学者论文集锦[M].北京:北京大学出版社,1991..
  • 3苏志霄,刘宏昭,李鹏飞,曹惟庆.振动系统结构参数估计的Taylor变换法[J].应用力学学报,2000,17(1):47-53. 被引量:3

共引文献6

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部