期刊文献+

修正变光滑长度SPH方法及其应用 被引量:4

Modified SPH method considering full variable smoothing lengths effects and its applications
下载PDF
导出
摘要 提出了修正的变光滑长度SPH方法及其算法实现。与传统变光滑长度SPH法相比,新方程组基于对称形式核函数近似,并从根本上考虑了变光滑长度影响。方程组中,密度演化方程与变光滑长度方程隐式关联;而SPH动量方程和能量方程在Springel提出的全守恒SPH方程组基础上,改进其分散核近似形式为对称核近似形式得到。由于新方程组密度演化方程和变光滑长度方程隐式耦合,采用迭代求解密度演化方程和变光滑长度方程,显式求解SPH动量方程和能量方程的办法,迭代过程增加的计算量相对很少。给出了2个一维激波管算例和二维Sedov算例来验证方法的有效性。结果表明,新方法很好地解决了传统SPH法中变光滑长度影响,特别是在模拟二维Sedov问题时新方法能得到比Springel方法更准确的压强峰值位置,中心压强也更接近理论值。特别适合模拟爆炸与冲击、大变形大扭曲等密度和光滑长度变化剧烈的问题。 Modified SPH equations including fully variable smoothing length aspects and its implementation were proposed. Unlike the existing adaptive kernel SPH method, the fully variable smoothing lengths effects have been considered essentially in the scheme based on the adaptive symmetrical kernel estimation. Among the new equations, the evolution equation of density was derived, which is implicitly coupled with the variable smoothing length equation and the momentum equation and energy equation were derived from Springel's fully conservative formulation SPH using the symmetrical kernel estimation instead of the scattered kernel estimation algorithm. Because the new SPH density evolution equation was implicitly coupled with the variable smoothing length equation, an additional iteration process was employed necessarily to solve the evolution equations of density and the variable smoothing lengths equation, and the SPH momentum equation and the energy equation ware solved, which little cost in the iteration algorithm. The new equations and its algorithm are tested via two 1D shock-tube problems and a 2D Sedov problem, which shows that the new algorithm corrects the variable smoothing lengths effect fairly well, especially in the 2D Sedov problem, and the pressure peak is captured by the presented method more accurately than that of Springel's scheme, and the accuracy of the pressure at the center in Sedov problem is also improved. The new method can deal well with the large density gradient and large smoothing length gradient problems, such as large deformation and serious distortion problems in high velocity impact and blasting phenomenon.
出处 《解放军理工大学学报(自然科学版)》 EI 2007年第5期419-424,共6页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家973计划资助项目(61338) 国家教育部NCET基金资助项目
关键词 光滑粒子流体动力学 无网格法 激波管 Sedov算例 SPH meshless shock-tube Sedov problem
  • 相关文献

参考文献16

  • 1LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. The Astronomical Journal,1977,82(12):1013-1024.
  • 2GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non- spherical stars[J]. Mon Not R astr Soc, 1977, 181: 375-389.
  • 3GINGOLD R A, MONAGHAN J J. Kernel estimates as a basis for general particle methods in hydrodynamics [J]. Comput Phys, 1982,46 : 429-453.
  • 4EVRARD A E. Beyond N-body: 3D cosmological gas dynamics[J]. Mon Not R astr Soc, 1988, 235: 911- 934.
  • 5HERNQUIST L. Some cautionary remarks about smoothed particle hydrodynamics[J]. The Astronomical Journal, 1993,404 :717-722.
  • 6NELSON R P, PAPALOZIZOU J C. Variable smoothing lengths and energy conservation in smoothed particle hydrodynamics[J]. Mon Not R astr Soc, 1994,270: 1-29.
  • 7A S, M AJ, P CJ. Adaptive smooth particle hydrodynamics and particle-particle coupled codes:energy and entropy conservation[J]. The Astronomical Journal, 1996,461:884-896.
  • 8SPRINGEL V, HERNQUIST L. Cosmological smoothed particle hydrodynamics simulations: the entropy equation[J]. Mon Not R astr Soc, 2002,333: 649-667.
  • 9THOMAS P A, COUCHMAN H M P. Simulating the formation of a cluster of galaxies[J]. Mon Not R astr Soc, 1992,257:11-31.
  • 10MONAGHAN J J. SPH compressible turbulence[J]. Mon Not R Astr Soc,2002,335(52):843-869.

同被引文献30

  • 1Lucy L B. A numerical approach to the testing of the fission hypothesis [J]. Astronomical Journal,1977,82(12) : 1013 -1024.
  • 2Sigalotti L D,Klapp J,Sira E, et al. SPH simulations of time-dependent Poiseuille flow at low Reynolds numbers[ J]. Journal of Computational Physics ,2003,191 : 622 - 638.
  • 3Lohner R,Yang C, Onate E. On the simulation of flows with violent free surface motion [ C ] //44th Aerospace Sciences Meeting and Exhibit, 2006.
  • 4Johnson G R ,Beissel S R. Normalized smoothed functions for SPH impact computations [ J ]. Journal of Numerical Methods in Engineering,1996,39: 725 - 741.
  • 5Monaghan J J. Smoothed particle hydrodynamics [ R]. Reports on Progress in Physles,2005.
  • 6Swegle J W,Attaway S W. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations [ J ]. Computational Mechanics,1995,17: 15i - 168.
  • 7Liu M B,Liu G R,Lam K Y. Investigations into water mitigation using a meshless particle method[ J]. Shock Waves,2002,12 : 181 - 195.
  • 8Liu M B,Liu G R,Lam K Y,et al. Smoothed particle hydrodynamics for numerical simulation of underwater explosion [ J]. Computational Mechanics, 2003,30 : 106 - 118.
  • 9Liu M B,Liu G R,Zong Z,et al. Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology [ J]. Computers & Fluids ,2003,32 : 305 - 322.
  • 10Liu M B,Liu G R,Lam K Y,et al. Meshfree particle simulation of the detonation process for high explosives in shaped charge unlined cavity configurations[ J]. Shock Waves,2003,12 : 509 - 520.

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部