期刊文献+

分类重复测量数据的非线性混合效应模型 被引量:4

THE NONLINEAR MIXED-EFFECT MODELS FOR CATEGORICAL REPEATED MEASUREMENT DATA
下载PDF
导出
摘要 [目的]探讨分类重复测量数据的非线性混合效应模型及SAS8.0软件NLMIXED过程实现。[方法]直接拟合分类反应变量的非线性概率模型,结合重复测量资料的特点,采用附加高斯积分来获得最大似然的参数估计。[结果]非线性混合效应模型能很好地拟合分类反应变量的重复测量资料,它允许固定效应和随机效应进入模型的非线性部分,可方便地分析随机缺失等非均衡数据。[结论]分类反应变量重复测量资料的非线性混合效应模型分析结果合理、容易解释,为分类重复测量资料提供一种新的分析思路。 [Objective] To discuss the nonlinear mixed-effect models for categorical repeated measurement data and the procedure of realization in SAS8.0 software NLMIXED program. [Methods] The nonlinear probability models for categorical response variable were directly fitted and then combined with the characteristics of repeated measurement data, the maximum likelihood estimations were got by using adaptive Gaussian integration. [ Results] Nonlinear mixed-effect models could well fit the categorical repeated measurement data, both fixed and random effects were permitted to have a nonlinear relationship with the response variable, it could easily analyze the unbalanced data such as random missing data. [Conclusions] The analysis results of nonlinear mixed-effect models are reasonable and easily to be explained, and the nonlinear mixed-effect models provide a new analysis idea for categorical repeated measurement data.
出处 《现代预防医学》 CAS 北大核心 2007年第20期3866-3868,共3页 Modern Preventive Medicine
基金 山西医科大学青年基金资助课题(200509)
关键词 分类重复测量数据 非线性混合效应模型 NLMIXED过程 Categorical repeated measurement data Nonlinear mixed-effect model NLMIXED procedure
  • 相关文献

参考文献6

  • 1Lindstrom ML, Bates DM. Nonlinear mixed effects models for repeated measures data[J]. Biometrics, 1990, 46 (3): 673-687.
  • 2Vonesh, E.F., Chinchilli, V.M. Linear and Nonlinear Models for the Analysis of Repeated Measurements [M]. New York: Marcel Dekker, 1997.
  • 3SAS Institute. SAS/STAT user's guide [M]. SAS Institute, Cary, NC, 2000.
  • 4Kenward MG, Jones B. Alternative approaches to the analysis of binary and categorical repeated measurements [J]. J Biopharm Star, 1992, 2 (2): 137-170.
  • 5Zeger SL, Liang KY, Albert PS. Models for longitudinal data: a generalized estimating equation approach [J]. Biometrics. 1988, 44 (4): 1049-1060.
  • 6R.M.Balan, 1. Schiopu-Kratina. Asymptotic results with generalized estimating equations for longitudinal data [J]. Ann. Statist, 2005, 33 (2), 522-541.

同被引文献16

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部