期刊文献+

基于混合大灭绝粒子群算法的座位控制模型

Hybrid Particle Swarm Optimizer with Mass Extinction Algorithm for Airline Seat Inventory Control
下载PDF
导出
摘要 座位优化控制是航空公司增加利润的有效方法。基于旅客的需求预测,可以利用数学规划模型为不同的航段和票价组合计算座位销售上限或者销售竞价,从而达到单个航班收入最大化的目的。常用的方法可分为确定模型和概率模型,但是对多航段多舱位的优化问题,由于出现了复杂的组合和约束,这些模型必须简化。提出了基于混合大灭绝粒子群算法的座位优化控制模型,并和常用的优化方法进行了仿真对比。研究结果表明,混合大灭绝粒子群算法应用于座位优化,可得到满意的解,同时,该算法简化了复杂的约束关系,易于实现,具有明显的优势。 Airline seat inventory control is a very profitable tool in the airline industries. Mathematical programming models provide booking limits or bid -prices for all itineraries and fare classes based on demand forecasts. The general models include deterministic approximation methods and probabilistic approximation methods, but these models are hard to solve them if the number of decision variables and constraints is large. We present a new model for seat inventory control based on a genetic algorithm in this paper, and simulating results was compared between the new model and general models. Study results shows that the hybrid particle swarm optimizer with mass extinction is profitable for seat inventory control, and it is easy to implement.
作者 简平
出处 《航空计算技术》 2007年第5期25-27,31,共4页 Aeronautical Computing Technique
关键词 收益管理 混合大灭绝粒子群算法 座位优化控制 revenue management hybrid particle swarm optimizer with mass extinction seat inventory control
  • 相关文献

参考文献8

  • 1樊玮,吴桐水.航空公司收益管理研究综述[J].中国民航学院学报,2006,24(5):42-50. 被引量:4
  • 2Sanne V.de Boer,Richard Freling,Nanda Piersma.Mathematical programming for network revenue management revisited[J].European Journal of Operational research.2002(137):72 -92.
  • 3王兴云.智能优化算法在收益管理中的应用[D].中国民用航空学院硕士论文.天津:中国民用航空学院,2005,2.
  • 4Xie xiaofeng,Hybird Particle Swarm Optimizer with Mass Extinction[A].Int.Conf.on Communication,Circuits and Systems (ICCCAS)[C].Chengdu,China,2002:580-587.
  • 5G.B.Fogel,G.W.Greenwood,K.Chellapilla.Evolutionary computation with extinction:experiments and analysis[A].Proc.IEEE Int.Conf.On Evolutionary Computation[C].2000:1415-1420.
  • 6T.Krink,R.Thomsen.Self-organized criticality and mass extinction in evolutionary algorithms[A].Proc.IEEE Int.Conf on Evolutionary algorithms.Proc.IEEE Int.Conf.on Evolutionary Computation[C].2001:1155-1161.
  • 7E.Andrew Boyd,Revenue management and e-commerce[J].Management Science,2003 (49),1-62.
  • 8Sanne V.de Boer,Richard Freling,Nanda Piersma.Mathematical programming for network revenue management revisited[J].European Journal of Operational research,2002(137):72 -92.

二级参考文献46

  • 1BARRY C S,JOHN F L,ROSS M D. Yield management at American airlines[J]. Interfaces, 1992,22(1):8-31.
  • 2LITTLEWOOD K. Forecasting and Control of Passager bookings[C]//12th Agieors Symposium Proc. Nathanya,Israel:Agifors,1972:95-117.
  • 3Yield Manager Now Control Tactical Marketing[Z]. Lloyd:Lloyd's Aviation Economist, 1985.
  • 4BECKMANN J M. Decision and team problems in airline reservations[J]. Econometrical, 1958,26:134-145.
  • 5MCGILL J I,VAN RYZIN G J. Revenue management:research overview and prospects[J]. Transportation Science, 1999.33 (2): 233-256.
  • 6CHATWIN R E. Continuous-time airline overbooking with time-dependent fares and refunds [J]. Transportation Science,1999,33(2):182-191.
  • 7TAYLOR C J. The determination of Passenger Booking Levels[C]//Proceedings 2^nd Agifors Symposium. New York:American Airlines.1962:93-116.
  • 8SHLIFER R,VARDI Y. An airline overbooking policy[J]. Transportation Science, 1975,9: 101-114.
  • 9BELOBABA P P. Air Travel Demand and Airline Seat Inventory Management[EB/OL]. [2005-12-04]. http://icat-server.mit.edu/Library.
  • 10BODILY S E,PFEIFER P E. Overbooking decision rules[J]. International Journal of Management Science, 1992,20(1): 129-133.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部