期刊文献+

一个六阶图与路的笛卡尔积交叉数

On the Crossing Numbers of Cartesian Product of a 6-vertices Graph with Paths
下载PDF
导出
摘要 确定图的交叉数是一个完全NP-问题,因为其难度,所以我们能够确定交叉数的图类很少.本文先构造F×Pn≤2n的一种好画法,由这种好画法计算出Cr(F×Pn)≤4n,然后利用数学归纳法证明Cr(F×Pn)≥4n,从而确定了F与Pn的笛卡尔积交叉数即Cr(F×Pn)=4n. Determining the crossing numbers of graphs is NP-complete. Because of the complexity of the problem , there are a few exact results on the crossing numbers of graphs. In this paper, we first consider a good drawing of F x Pn and through this find Cr(F × Pn) ≤ 4n good drawing ; then we proved that Cr(F × Pn) ≥ 4n by induction, so we assert that Cr(F × Pn) ≥4n.
出处 《山西师范大学学报(自然科学版)》 2007年第3期10-13,共4页 Journal of Shanxi Normal University(Natural Science Edition)
基金 湖南省教育厅重点资助项目(05A037)
关键词 交叉数 笛卡尔积 crossing number path cartesian product
  • 相关文献

参考文献11

  • 1邦迪 默蒂著 吴望名译.图论及其应用[M].北京:科学出版社,1984..
  • 2M Klesc.The crossing numbers of K2,3×Pn and K2,3×Sn[J].Tatra Moutain Math Publ,1996,9:51-56.
  • 3M Klesc.The crossing numbers of products of Paths with 5-vertex graphs[J].Discrete.math,2001,233:353-359.
  • 4M Klesc.The crossing numbers of products of Paths with 4-vertex graphs[J].J Graph Theory,1994,18:605-614.
  • 5KAsano.The crossing number of K1,3,n and K2,3,n[J].J Graph Theroy,1986,10:1-8.
  • 6M.Klesc.The crossing numbers of certain Cartesian products[J].Discuss Math Graph Theory,1995,15:5-10.
  • 7M R Garary,D S Johnson.Crossing number is Np-complete[J].Siam J Algebric Discrete Methods,1993,4:312-316.
  • 8Y Q Huang,Tinglei Zhao.The crossing numbers of K1,4,n[J].Discete Mathematics,to appear.
  • 9D J Kleitman.The crossing numbers of K5,n[J].J Combinatorial Theory,1970,9:315-323.
  • 10D R Woodall.Cyclic graphs and Zarankiewicz's corssing number conjecture[J].J Graph Theory,1993,17:239-243.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部