期刊文献+

一种新的岩土流变模型元件 被引量:122

A NEW RHEOLOGICAL MODEL ELEMENT FOR GEOMATERIALS
下载PDF
导出
摘要 分数阶微积分被发现是一个解决力学建模难题的有力数学工具,利用Riemann-Liouville的分数阶微积分算子及理论,给出一种软体元件及其本构方程,用来模拟介于理想固体和流体之间的土体。该元件能够很好地反映应力松弛和蠕变现象中应力–应变的非线性渐变过程。通过一个软体元件与一个弹簧元件串联或并联,构建2种流变模型,并给出这2种模型的本构方程、松弛模量和蠕变模量。与土的流变实验数据相拟合结果表明,含有软体元件的模型能够更有效地刻画土的流变特性,可以减少参数数量。 A soft-matter element and its constitutive equations were presented by employing the Riemann- Liouville fractional calculus operator theory. The element could be used to simulate the soil of which behaviors were deemed as the materials between perfect solid and fluid; it also could be used to describe the nonlinear slow-variable process of stress-strain in stress relaxation or creep. Two new models were determined when a soft-matter element was parallel to or series connected with an elastic element. The constitutive equations, relaxation modulus and creep modulus could also be obtained. A rheological trial fitting curve of soil was provided The achieved results show that the proposed model with soft-matter element was more efficient in describing the rheological characteristics of soil and could reduce the number of parameters.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2007年第9期1899-1903,共5页 Chinese Journal of Rock Mechanics and Engineering
基金 河海大学科技创新基金项目(2006407911)
关键词 岩土工程 软体元件 分数阶微积分 流变 应力松弛 蠕变 geotechnical engineering soft-matter element fractional calculus rheology stress relaxation creep
  • 相关文献

参考文献4

二级参考文献28

  • 1詹美礼,钱家欢,陈绪禄.粘弹塑性有限单元法及其在隧道分析中的应用[J].土木工程学报,1993,26(3):13-21. 被引量:3
  • 2郑榕明,陆浩亮,孙钧.软土工程中的非线性流变分析[J].岩土工程学报,1996,18(5):1-13. 被引量:82
  • 3周光泉 刘孝敏.黏弹性理论[M].合肥:中国科学技术大学出版社,1996.55-57.
  • 4Glockle W G, Nonnenmacher T F. Fractional integral operators and Fox functions in the theory of viscoelasticity[J]. Macromolecules,1991, 24(24): 6 426 - 6 434.
  • 5A D Drozdov. Mechanics of viscoelastic solids[M]. New York: John Wiley & Sous Ltd, 1998. 21 - 65.
  • 6R S Lakes. Viscoelastic solids[M]. London: CRC Press, 1998. 63 - 110.
  • 7Bruce J W, Mauro B, Paolo G. Physics of fractal operators[ M]. New York: Springer-Verlag, 2003.3 - 40.
  • 8Nonnenmacher T F, Metzler R. On the Riemann-Liouville fractional calculus and some recent applications[J]. Fractals, 1995, 3(3):557 - 566.
  • 9Schiessel H, Metzler R, Blumen A, et al. Generalized viscoelastic models: their fractional equations with solutions[J]. J Phys A: Math Gen, 1995, 28: 6567-6584.
  • 10Schiessel H. Constitutive behavior modeling and fractional derivatives[A]. Advances in the flow and rheology of non-Newtonian fluids[C]. Eds Siginer, et al. Amsterdam: Elsevier, 1999. 298-299.

共引文献46

同被引文献1032

引证文献122

二级引证文献744

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部