期刊文献+

若干含幂函数类对称曲线裂纹平面弹性问题的解析解 被引量:6

Analytical Solutions for the Elastic Plane Problem with Symmetric Power Function Cracks
下载PDF
导出
摘要 研究含幂函数类对称曲线裂纹平面弹性问题,与解决孔口问题类似,采用传统的复变函数保角映射法,给出适当的保角变换公式,将裂纹外的区域映射到一个复平面的单位圆内,得到了含幂函数类对称曲线裂纹尖端Ⅰ-Ⅱ型应力强度因子的解析表达式.该解在特殊极限条件下可解析地退化到穿透型直线裂纹的经典解.参数分析表明,幂函数类对称曲线裂纹尖端的应力强度因子与裂纹的尺寸和形状有关. Problems of an elastic plane having symmetric power function cracks were discussed. Classical complex variable method was followed as in solving problems about hole. Some new conformal mapping formulae were proposed so that the exterior part of the symmetric power function cracks could be mapped into a unit circle. Analytical solutions for the mode Ⅰ -Ⅱ stress intensity factors at the crack tips of symmetric power function cracks were thus obtained. These solutions analytically reduced to the classical solutions for the line crack in a special case. It was found that size and shape of the symmetric cubric curve crack affected the mode Ⅰ -Ⅱ stress intensity factor at the crack tips.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2007年第5期533-536,共4页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10372016) 内蒙古自然科学基金资助项目(200607010104)
关键词 幂函数类对称曲线裂纹 应力强度因子 复变方法 平面弹性问题 symmetric power function cracks stress intensity factor complex variable method plane elasticity problem
  • 相关文献

参考文献8

  • 1魏雪霞,董健.含轴对称抛物线曲裂纹平面弹性问题的解析解[J].北京理工大学学报,2004,24(5):380-382. 被引量:13
  • 2Zhu Ting,Yang Wei.Fatigue crack growth in ferroelectrics driven by cyclic electric loading[J].Mechanics and Physics of Solids,1999,47:81-97.
  • 3Yang Xiaochun.Fan Tianyou.New formulation for arbitrary cracks problem and its stress intensity factor of plane elasticity[J].Journal of Beijing Institute of Technology,1999,8(4):364-369.
  • 4Craig D,Kujaw ski D,Ellyin F.An experinental technique to study the behavior of small corner cracks[J].Int J Fatigue,1995,17(4):253-259.
  • 5陆建飞,王建华,沈为平.曲线裂纹和反平面圆形夹杂相交问题[J].固体力学学报,2000,21(3):205-210. 被引量:12
  • 6Kaynak C,Ankara A,Baker T J.Effects of short cracks on fatigue life calculations[J].International Journal of Fatigue,1996,18(1):25-31.
  • 7Muskhelishvili,NI.Some Basic Problems of Mathematical Theory[M].Amsterdam:P Noordhoff and Co,1953.
  • 8徐芝纶.弹性力学:上册[M].北京:高等教育出版社,1985.1-160.

二级参考文献13

  • 1胡元太,赵兴华.沿抛物线分布的各向异性曲线裂纹问题[J].应用数学和力学,1995,16(2):107-115. 被引量:14
  • 2王铎.断裂力学[M].哈尔滨:哈尔滨工业大学出版社,1989.248-249.
  • 3Lu Jianfei,Acta Mech Solida Sin,2000年,13卷,119页
  • 4Lu Jianfei,上海交通大学学报,1998年,3卷,2期,37页
  • 5Chen Y Z,Arch Appl Mech,1997年,67卷,566页
  • 6Li Y L,Int J Frac,1993年,63卷,11页
  • 7Chen Y Z. Stress intensity factors for curved and kinked cracks in plane extension[J]. Theoretical and Applied Fracture Mechanics, 1999,31:223-232.
  • 8Zhu Ting, Yang Wei, Fatigue crack growth in ferroelectrics driven by cyclic electric loading[J]. Mechanics and Physics of Solids, 1999,47:81-97.
  • 9Craig D, Kujawski D, Ellyin F. An experimental technique to study the behavior of small corner cracks[J]. Int J Fatigue, 1995,17(4):253-259.
  • 10Kaynak C, Ankara A, Baker T J. Effects of short cracks on fatigure life calculations[J]. International Journal of Fatigue, 1996,18(1):25-31.

共引文献24

同被引文献38

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部