期刊文献+

基于Markov预测模型的动态足球机器人阵型策略方法 被引量:1

A Dynamic Team Formation Method of Robot Soccer Games Based on the Markov Forecasting Model
下载PDF
导出
摘要 本文设计并实现了一种新的实体机器人足球比赛中队伍阵型策略方法,此方法建立在对球的Markov预测模型基础上,将目标和阵型相融合,实现了阵型的动态选择以及阵型间的动态切换。 A new method of team formation strategy in solid robot soccer games is designed and implernented. The method is based on the Markov forecasting model of the ball and integrates the objectives and the formations. It realizes the dynamic choosing and switching of the formations.
作者 张浩 陈小平
出处 《计算机工程与科学》 CSCD 2007年第10期120-123,共4页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60275024) 国家863计划资助项目(2001AA422200)
关键词 机器人足球 阵型 卡尔曼滤波 模糊评判 robot soccer formation Kalman filtering fuzzy judging
  • 相关文献

参考文献9

  • 1Reis L P,Lau N,Costa E. Situation Based Strategic Positioning for Coordinating a Team of Homogeneous Agents[A]. Balancing Reactivity and Social Deliberation in Multi-Agent Systems[C]. 2001. 175-197.
  • 2Quinlan M J,Obst O,Chalup S K Towards Autonomous Strategy Decisions in the RoboCup Four-Legged League[A]. Proc of the 7th IJCAI Int'l Workshop on Nonmontonic Reasoning, Action and Change [C]. 2006.
  • 3McMillen C, Veloso M. Distributed, Play-Based Role Assignment for Robot Teams in Dynamic Environments[J]. Proc of Distributed Autonomous Robotic Systems, 2006.
  • 4李实,陈江,孙增圻.清华机器人足球队的结构设计与实现[J].清华大学学报(自然科学版),2001,41(7):94-97. 被引量:29
  • 5Zhang Xiaohan, Chen Xiaoping, Li J ialing, et al. Vision-Based Monte Carlo - Kalman Localization in a Known Dynamic Environment[A]. Proc of the 9th Int'l Conf on Control, Automation, Robotics & Vision[C]. 2006.
  • 6Yan J, Bitmead R R. Coordinated Control and Information Architecture[A]. Proc of the 42nd IEEE Conf on Decision and Control. Vol. 4[C]. 2003. 3919-3923.
  • 7陈小平.国际机器人足球(Robocup)最新进展.机器人技术与应用,2001,1:25-28.
  • 8蔡剑怀,吴顺祥,缪克华,李茂青.RoboCup中基于神经网络的阵型策略[J].系统仿真学报,2006,18(1):237-239. 被引量:5
  • 9Welch G, Bishop G. An Introduction to the Kalman Filter [R]. Department of Computer Science, University of North Carolina at Chapel Hill,2003.

二级参考文献7

  • 1袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,1996..
  • 2Jinyi Yao,Jiang Chen,Zengqi Sun.An application in RoboCup combining Q-learning with Adversarial Planning [EB/OL].Available in http://robocup.lits.tsinghua.edu.cn/download/document/singhuaeolus _kick .zip.
  • 3Peter S.Layered Learning in Multi-agent System [D].Pittsburgh:school of computer science,Carnegie Mellon University,1998.
  • 4Hiroki K,Minoru A,Yasuo K,etal.RoboCup:A Challenge Problem for AI and Robotics [C]// Hiroki K.RoboCup-97:Robot Soccer WorldCup I.Berlin:Springer,1998.1-19.
  • 5Kostas K,Hu Huosheng.Rinforcement Learning and Co-operation in a Simulated Multi-agent System [C]// Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems.Japen:IEEE,1999.990-995.
  • 6Endo K,Ito S,Yam aguchiH,etal.Team Description for "DONGURI" [C]// Hiroki K.RoboCup-98:Robot Soccer WorldCup II.Berlin:Springer,1998.305-308.
  • 7Kostas K,Proc the 1999 IEEE/RSJ Int Conferenceon Intelligent Robots and Systems,1999年,990页

共引文献36

同被引文献13

  • 1蔡剑怀,吴顺祥,缪克华,李茂青.RoboCup中基于神经网络的阵型策略[J].系统仿真学报,2006,18(1):237-239. 被引量:5
  • 2方宝富,王浩.机器人足球仿真[M].合肥:合肥工业大学出版社,2011.
  • 3韩家炜.数据挖掘:概念与技术[M].3版北京:机械工业出版社,2012.
  • 4HarringtonP.机器学习实战[M].北京:人民邮电出版社,2013.
  • 5] Ayanegui-Santiago H. Recognizing team formations in multia- gent systems : Applications in robotic soccer[ C ]//Computation- al Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems. First International Conference, ICCCI 2009. Poland : Wroclaw ,2009 : 163 - 173.
  • 6NAKASHIMA T, UENISHI T, NARIMOTO Y. Off-line learning of soccer formations from game logs [ C ]//World Automation Congress(WAC). IEEE,2010 : 1 - 6.
  • 7RILEY P, VELOSO M, KAMINKA G. An empirical study of coaching [ M ]//Distributed Autonomous Robotic Systems 5. New Delhi : Springer,2002:215 - 224.
  • 8KOBAYASHI Y, KAWAMURA H, SUZUKI K. Counter attack detection with machine learning from log files of RoboCup sim- ulation[ C]//Intemational Conference on Soft Computing and Intelligent Systems,2012 : 1821 - 1826.
  • 9AKIYAMA H, ARAMAKI S, NAKASHIMA T. Team forma- tion estimation using cluster analysis and triangulation model [ C ]//International Conference on Soft Computing and Intelli- gent Systems,2012:956 -959.
  • 10RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks [ J ]. Science, 2014 ( 6191 ) : 1492 - 1496.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部