摘要
高等数学题目类型繁多,解题方法灵活多变,其中代换法不但能开拓灵活巧妙的解题思路,而且有化难为易、化繁为简之功效.本文通过例子说明倒代换、增量代换、三角代换、双代换、不等量代换、比值代换法在解题中的应用.
Due to the variable subjects and methods of solving problems in Higher Mathematics, substitution will not only flexibly develop the ways of problem solving, but also an effect of simplification. By reversing the examples in solving the problems of application, substitution, ways of incremental-substitution, tangle-substitution, double-substitution, unequalsubstitution, ratio-substitution and so on, are discussed.
出处
《沈阳师范大学学报(自然科学版)》
CAS
2007年第4期442-444,共3页
Journal of Shenyang Normal University:Natural Science Edition
关键词
高等数学
解题
代换法
Higher Mathematics
solving problems
substitution