期刊文献+

过冷纯熔体中晶体生长平界面的稳定性分析

Stability analysis of the planar interface for crystal growth in undercooled pure melts
下载PDF
导出
摘要 具有匀速运动平直界面的一维凝固系统,一经扰动其界面将不再为平面。Mullins-Sekerka在假定扰动波长远远小于热扩散长度与液固界面满足局部平衡条件的基础上,推出了M-S色散关系。在界面上也存在着动力学的作用,即界面的稳定性也依赖于动力过冷。文章在界面上考虑动力学影响,应用渐近分析理论继续分析过冷纯熔体液固界面的稳定性。结果表明,非快速凝固系统的液固界面不会绝对稳定。 The kinetic effect of crystal growth on the liquid-solid interface is considered. By using the asymptotic analysis method, the stability of the liquid-solid planar interface in unsteady solidification is studied. It is showed that, if the crystal growth velocity is not too fast, the liquid-solid planar interface can not be absolutely stable. A planar interface which is moving with a constant velocity in solidification is not the planar by imposing an infinitesimal perturbation. Mullins and Sekerka gave an M-S dispersion relation based on that the wavelength of perturbations was much smaller than the thermal diffusion length and the liquid-solid interface met the local equilibrium condition. There is the kinetic effect on the interface whose stability also relies on the kinetic undercooling. This paper investigates the stability of the interface in undercooled pure melts. It is concluded that the liquid-solid planar interface can not be absolutely stable for non-rapid solidification.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第10期1319-1322,1326,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家重大基础研究资助项目(G2000067206-1)
关键词 晶体生长 平界面 界面稳定性 渐近分析 crystal growth planar interface interface stability asymptotic analysis
  • 相关文献

参考文献12

  • 1Mullins W W, Sekerka R F. Stability of a planar interface during solidification of a dilute binary alloy [J]. J Appli Phys,1964, 35:444-451.
  • 2Langer J S, Muller-Krurnkhaar H. Theory of dendritic growth: (Ⅰ) elements of a stability analysis[J]. Acta Metal,1978, 26:1681-1687.
  • 3Huang S C, Glicksman M E. Fundamentals of dendritic solidiflcation: (Ⅰ) steady-state tip growth[J]. Acta Metal, 1981, 29:701-715.
  • 4Bahrenberg S V, Coryell S R, Mcfadden G B. Morphological stability of a binary alloy: thermodiffuslon and temperature-dependent diffusivity[J]. J Crystal Growth, 2001, 223:565-572.
  • 5Li Shuwang, Lowengrub J, Lowengrub J, et al. Nonlinear stability analysis of self-similar crystal growth: control of the Mullins-Sekerka instability[J]. J Crystal Growth, 2005, 277:578-592.
  • 6Trivedi R, Kurz W. Morphological stability of a planar interface under rapid solidification conditions[J]. Acta metal, 1986, 34(8) : 1663- 1670.
  • 7Glicksman M E, Lupulesal A O. Dendritic crystal growth in pure materials [ J ]. J Crystal Growth, 2004. 264: 541-549.
  • 8Boettinger W J, Coriell S R. Mechanisms of microsegregation-free solidification[J]. Mater Sci Eng A, 1984, 65: 27-36.
  • 9Galenko P K, Funke O, Wang J, et al. Kinetics of dendritic growth under the influence of concective flow in solidification of undercooled droplets[J]. Mater Sci Eng A, 2004, 375/377:488-492.
  • 10Turnbull D. Metastable structures in metallurgy[J]. Metall Trans A, 1981, 12: 695-708.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部