期刊文献+

半连续Ag纳米薄膜显微图像的多重分形谱研究 被引量:2

Study on Multifractal Spectrum of Microscope Image of Semi-Continuous Ag Nanoparticle Films
下载PDF
导出
摘要 多重分形谱是分形理论中最基本的一个数学概念,也是分形理论应用中最重要的一个方面。在解决实际问题中多重分形谱主要用来描述物理量不均匀的随机概率分布,通过对半连续Ag纳米薄膜显微图像结构形貌的分析和处理,以及通过薄膜显微图像多灰度概率测度进行多重分形谱分析,用多重分形谱描述随薄膜厚度变化的Ag颗粒的空间分布的不均匀性。实验结果表明,多重分形谱是一种有意义的表征参数,能够从多分形角度对薄膜中Ag厚度的空间分布均匀性和尺寸分布进行定量化的分析和解释。 The multifractal spectrum is a basic mathematical conception in the fractal theory and it is one of the most important factors in the applications of the fractal theory. In engineering problems, the multifractal spectrum is mainly to describe the random probability distribution of physical phenomenon. In this paper the multifractal spectrum is calculated by multigray probability measures of the microscope image of semicontinuous Ag nanoparticle films. It is found that multifractal spectrum can characterize space distribution of Ag particles influence on nanoparticle film uniformity in different thickness films quantitatively. Experimental results show that the multifractal spectrum is an important characteristic parameter, which enables the quantitative analysis and explanation of the homogeneous space distribution and size distribution of Ag particles thickness of films from the multifractal issue.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2007年第5期948-951,共4页 Journal of University of Electronic Science and Technology of China
基金 安徽省教育厅基金项目资助(2005kj058)
关键词 分形 纳米薄膜 显微图像 多重分形谱多 多灰度概率测度 fractal measures nanoparticle films microscope image multi-fractal spectrum multi-gray probability
  • 相关文献

参考文献11

  • 1DAVID A L,HAMLIN M J,SSURENDRA P S.Relationship between fracture surface roughness and fracture behavior of cement paste and mortar[J].J Am Ceram Soc,1993,76 (3):589-597.
  • 2MANDELBROT B B.The fractal geometry of nature[M].San Fransisco:Free man W.H,New York,1982:18-47.
  • 3FALCONER K J.Fractal geometry mathematical foundations and application[M].John Wiley and Sons,1990:42-54.
  • 4BROWN G,MICHON G,PEYRIERE J.On the multifractal analysis of measures[J].Journal of Stat Phys.,1992,66(3):775 - 790.
  • 5FICKER T.Normalized multifractal spectra within the boxcounting method[J].Czech.J.Phys.,2000,50:389-403.
  • 6FICKER T.Electron avalanches.Ⅱ.Fractal morphology of partial microdischarge spots on dielectric barriers[J].IEEE Transactions on Dielectrics and Electrical Insulation,2003,10(4):700-707.
  • 7李平,胡可乐,汪秉宏.多重分形谱在材料分析中的应用研究[J].南京航空航天大学学报,2004,36(1):77-81. 被引量:23
  • 8孙霞,熊刚,傅竹西,吴自勤.ZnO薄膜原子力显微镜图像的多重分形谱[J].物理学报,2000,49(5):854-862. 被引量:27
  • 9蔡琪,王磊,王佩红,宋学萍,孙兆奇.Au-MgF_2复合纳米颗粒薄膜的制备和微结构[J].真空科学与技术学报,2004,24(3):169-172. 被引量:4
  • 10谢淑云,鲍征宇.多重分形方法在金属成矿潜力评价中的应用[J].成都理工大学学报(自然科学版),2004,31(1):28-33. 被引量:9

二级参考文献28

  • 1[2]Russell B K,Mantovani J G.Phys Rev B,1987,35:2151
  • 2[3]Uchida K,Kaneko S.Opt Soc Am B,1994,11:1236
  • 3[4]Fujii M,Kita T, Hayashi S et al.J Phys:Condens Matter, 1997,9:8669
  • 4[5]Sun Z Q,Sun D M,Ruan T N.Vacuum,2002,68:155
  • 5[6]Dai Z Y,Wu J L, Liu W M et al. Acta Phys Sin, 1997,46:1230
  • 6[7]Li LJ,Wu J L. Acta Phys Sin, 1998,47:790
  • 7[8]Chandonnet A,Boivin G. Appl Opt, 1989,28:717
  • 8[9]Lissberger P H, Nelson R G. Thin Solid Films, 1974,21:159
  • 9Wu Z Q,Proc .Japan ChinaJointSeminaronAtomicLevelCharacterization,1998年
  • 10Li H,Phys Rev,1996年,B53卷,16631页

共引文献62

同被引文献12

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部