期刊文献+

无线传感器网络多目标路由的改进蚁群算法 被引量:10

An improved ant colony optimization algorithm for multi-object routing in wireless sensor networks
下载PDF
导出
摘要 提出一种集能耗、时延、鲁棒性和传输效率等于一体的多目标路由,且各目标的权重可以根据实际情况进行调节,具有较强的灵活性,提出一种正反馈和负反馈并存机制的蚁群算法,其主要思想是,若前路径比以往求得的最好路径性能更优,则当前路径信息素将加强,同时用当前路径取代最好路径,否则当前路径信息素减弱.用该改进的蚁群算法求解无线传感器网络多目标路由问题,实验数据表明:改进的蚁群算法的路由各方面性能良好,并优于目前其他典型路由. Multi-object routing with energy consumption,latency,robustness,and delivery efficiency,is proposed in wireless sensor networks mainly considering the sole object—energy consumption,and the weights of these objects can be regulated and of flexibility.The main idea of the improved ant colony optimization algorithm with its positive-negative feedback rule is that if the current route is superior to any routes that obtained before,the current route pheromone will be strengthened,on the contrary,will be weaken,and at the same time the best route is replaced by the current one.Then the improved ant colony optimization algorithm is applied to solve the multi-object routing problem in wireless sensor networks,and the data of the experiments proves that the improved ant colony optimization algorithm is excellent and superior to the other current typical routes.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第10期24-27,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60132030) 国家教育部博士学科点专项基金资助项目(20040486049)
关键词 无线传感器网络 多目标路由 评价函数 正-负反馈 蚁群算法 wireless sensor networks multi-object routing function of evaluation positive-negative feedback ant colony optimization algorithm
  • 相关文献

参考文献11

  • 1Intanagonwiwat C,Govindan R,Estrin D.Directed diffusion for wireless sensor networking[J].IEEE/ACM Transactions on Networking,2003,11 (1):2-16.
  • 2Heinzelman W,Kulik J,Balakrishnan H.Negotiation based protocols for disseminating information in wireless sensor networks[J].ACM Wireless Networks,2002 (8):169-185.
  • 3Manjeshwar A,Agrawal D P.TEEN:a routing protocol for enhance deficiency in wireless sensor networks[C]//2001 15th Parallel and Distributed Processing Symposium proceedings.San Francisco:IEEE Computer Society,2001:2 009-2 015.
  • 4Lindsey S,Raghavendra C S.PEGASIS:Powerful efficient gathering in sensor information systems[C]//Greg Richardson.2002 IEEE Aerospace Conference Proceedings.Big Sky:IEEE Computer Society,2002:9-16.
  • 5Krishnamachari B,Estrin D,Wicker S.Modelling data-centric routing in wireless sensor networks[C]//Proc of the IEEE Infocom.New York:IEEE Computer Society,2002:2-14.
  • 6Dorigo M,Maniezzo V,Colorni A.Positive feedback as a search strategy,91-016[R].Milan:Dipartimento di Electtronica,Politecnico di Milano,1991.
  • 7Colorni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[C]//Proceedings of the First European Conference on Artificial Life.Paris:Elsevier Publishing,1992:134-142.
  • 8Yuan Wei,Krishnamurthy S V,Tripathi S K.Synchronization of multiple levels of data fusion in wireless sensor networks[J].Global Telecommunications Conference,IEEE,2003,1:221-225.
  • 9Dorigo M,Maniezzo V,Colorni A.The ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B,1996(1):29-41.
  • 10Stutzle T,Hoos H.The max-min ant system and local search for the traveling salesman problem[C]//IEEE 4th International Conference on Evolutionary Computation.New York:IEEE Press,1997:309-314.

同被引文献108

引证文献10

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部