摘要
提出了一个两自由度非线性模型来描述鼓式制动器的低频制动振动,然后应用中心流形理论对系统进行简化,通过计算约化后系统的PB规范形,判断出在Hopf分岔点附近当μ>0时存在极限环振动.应用这种方法,通过大量的计算得出了随着制动器底板等效刚度的增大,扭转振动的振幅越来越小,以及在两个自由度方向上振幅随参数的变化趋势相反等规律.
In this study,a 2-degree non-linear dynamic model is presented to describe the low frequency vibration of drum brake.The centre manifold theory is applied to reduce the system at the Hopf bifurcation point.Through the calculation of PB normal form of the reduced system at the Hopf bifurcation point,the limit cycle oscillations(LCO) amplitude is obtained.By this method,the law that the increasing of baseplate stiffness can decrease the amplitude of torsion is found.
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第10期74-76,共3页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(50075029)
关键词
鼓式制动器
非线性
分岔
极限环颤振
drum brake
non-linear
bifurcation
limit cycle oscillation