期刊文献+

迭代逼近Banach空间中一类拟变分包含的解

Solutions of Iterative Approximation for Genrealized Quasi-variational Inclusions in Banach Spaces
下载PDF
导出
摘要 提出并研究了Banach空间中具有(β1,…,βN)-Lipschitz性质的一类广义拟变分包含问题,用预解式的方法构造了迭代逼近序列,证明了在一定条件下该迭代序列收敛于该类变分包含问题的解,给出了迭代解与解之间的误差估计,推广与改进近来的一些相应结果。 It introduces and studies a new class of set valued quasi - variational inclusions with ( β1 ,… ,βN) - Lipschitz mappings by using the methods of resolvent operator and iterative approximation. It proves some convergence theorems and error estimative formula of the solutions. The results here extend some resent results.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2007年第4期319-323,共5页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(10561007) 浙江省重点学科基础数学资助项目(ZC323006002)
关键词 M-增生映象 (β1.…βN)-Lipschitz映象 次微分 拟变分包含 m - accrative mapping ( β1,…… ,βN ) - Lipschitz mapping subdifferential quasi - variational inclusions
  • 相关文献

参考文献12

  • 1Lions J L, Stampacchia G. Variational Inequalities [ J ]. Commu Pure Applied Math, 1967,20:493 -519.
  • 2Burachik R S, Lusem A N,Strainer B F. Enlargement of Inmotone Operators with Applicators to Variational Inequalities[ J]. Set - valued Anal, 1997,5 : 159 - 180.
  • 3Baiocchi C, Capelo A. Variational and Quasivariational Inequalities, Applications to Free Boundary Problems [ M ]. New York : Wiley, 1984.
  • 4张石生.变分不等式与相补问题[M].上海:上海科技文献出版社,1991.
  • 5Huang N J. Generalized Nonlinear Variational Inclusions with Noncompact Valued Mappings [ J ]. Appl Math Lett, 1996,9:25 - 29.
  • 6Hassouni A,Moudafi A. A Perturbed Algorithm for Variational Inclusions [J]. J Math Anal Appl, 1994,185:706 - 712.
  • 7Noor M A. Generalized Set - valued Variational Inclusions and Resolvent Equation[J]. J Math Anal Appl, 1998, 228:206 - 220.
  • 8Chang S S. Generalized Set - valued Variational in Banach Spaces[J]. J Math Anal Appl,2000,246:409 - 422.
  • 9傅俊义,江慎铭,罗贤强.一类广义变分包含的迭代解[J].应用泛函分析学报,2003,5(3):276-280. 被引量:6
  • 10王元恒.Banach空间中无限簇广义集值变分包含[J].浙江大学学报(理学版),2004,31(4):381-386. 被引量:5

二级参考文献31

  • 1NOOR M A. An implicit method for mixed variational inequalities [J]. Appl Math Lett, 1998,11 (4):109-113.
  • 2NOOR M A. Generalized multi-valued quasi-variational inequalities (Ⅱ) [J]. Comput Math Appl, 1998,35(5):63-78.
  • 3ZENG L V. Herative algorithm for finding approximate solutions to completely generalized strongly nonlinear quasi-variational inequality [J]. J Math Anal Appl,1996,201: 180-191.
  • 4NOOR M A. Set-valued resolvent equations and mixed variational inequalities[J]. J Math Anal Appl,1998,220:741-759.
  • 5BARBU V. Nonlinear Semigroups and Differential Equations in Banach Spaces [M]. Leyden Nehterland:Noord-hoff Iinternet Publ, 1976.
  • 6郭大均.Hammerstein型非线性积分方程的固有值[J].数学学报,1977,20(2):99-108.
  • 7NOOR M A. Generalized set-valued variatiional inclusions and resolvent equations[J]. J Math Anal Appl,1998,228:206-220.
  • 8CHANG S S,CHO Y J, LEE B S,et al. Generalized set-valued variational inclusions in Banach spaces[J].J Math Anal Appl, 2000,246:409-422.
  • 9CHANG S S. Set-valued variational inclusions in Banach spaces [J]. J Math Anal Appl, 2000,248: 438-454.
  • 10CHANG S S, KIM J K,KIM K H. On the existence and iterative approximation problems of solutions for set-valued variational inclusions in Banach space[J]. J Math Anal Appl, 2002,268: 89-108.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部