期刊文献+

也谈椭圆和双曲线的一个有趣的定值

下载PDF
导出
摘要 文[1]给出了椭圆和双曲线的一个有趣的定值,笔者研究发现此类定值可以推广到一般情况,其结论如下: 定理1已知F1,F2是椭圆C:x^2/a^2+y^2/b^2=1(a〉b〉0)的左、右焦点,A,B是椭圆C的左右顶点,点P是椭圆C上的任意一点,直线PA,PB分别与直线l:x=m交于M,N两点,则F1M^→·F2N^→=m^2(c/a)^2+b^2-c^2.
作者 宋书华
出处 《中学数学月刊》 2007年第7期21-21,共1页 The Monthly Journal of High School Mathematics
  • 相关文献

参考文献1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部