摘要
文[1]给出了椭圆和双曲线的一个有趣的定值,笔者研究发现此类定值可以推广到一般情况,其结论如下:
定理1已知F1,F2是椭圆C:x^2/a^2+y^2/b^2=1(a〉b〉0)的左、右焦点,A,B是椭圆C的左右顶点,点P是椭圆C上的任意一点,直线PA,PB分别与直线l:x=m交于M,N两点,则F1M^→·F2N^→=m^2(c/a)^2+b^2-c^2.
出处
《中学数学月刊》
2007年第7期21-21,共1页
The Monthly Journal of High School Mathematics