期刊文献+

分形介质饱和渗流应力耦合数值模拟研究 被引量:1

STUDY ON NUMERICAL SIMULATION FOR COUPLED PROBLEM OF SEEPAGE AND STRESS IN FRACTAL MEDIA
下载PDF
导出
摘要 基于介质骨架、固体颗粒以及水是可压缩的这一假设,推导出饱和的渗流应力耦合控制方程组。采用加权残值法对耦合方程组进行有限元离散,并推导相应的弹塑性矩阵。对耦合计算中的渗透系数分形模型展开讨论,综述采用分形维描述多孔介质和裂隙介质渗透系数方面研究的进展。最后,在给出的固结算例中采用一个较为实用的分形渗透系数模型,该模型可模拟渗透系数随介质变形而变化。数值计算的结果显示出良好的规律性,可以提高对耦合试验观测现象的理解。 Base on the assumption of compressible skeleton,grain and watert,he saturated governing equations are deduced.The governing equations are discredited by using Galerkin method,and the matrix for elastoplastic constitutive model is also deduced.With introduction of the fractal permeability model in coupled problem,a review of the advance on describing of the permeability by fractal method in fractal porous media and fracture media is made.Finally,a practical fractal permeability model to applied in consolidation analysist,he permeability model can simulate the permeability changing with the deformation of media.The numerical result shows good regularity,and can improve the understanding of observation made in coupled experiment.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2007年第A01期2641-2647,共7页 Chinese Journal of Rock Mechanics and Engineering
基金 国家自然基金重点资助项目(50539110)
关键词 岩石力学 渗流应力耦合 分形多孔介质 有限元列式 饱和渗流 rock mechanics coupled seepage and stress fractal porous media finite element formulation saturated flow
  • 相关文献

参考文献22

  • 1BIOT M A. General theory of three-dimensional consolidation[J]. Appl. Phys., 1941, 12(6): 155-164.
  • 2BEDFORD A, DRUMHELLER D S. Theory of immiscible and structured mixtures[J]. Int. J. Eng. Sci., 1983, 24(5): 836 - 960.
  • 3ZIENKIEWICZ O C, CHAN A H C, PASTOR M, et al. Static and dynamic behaviour of soils: a rational approach to quantitative solution[C]. I-Fully Saturated Problem. London: Royal Soc., 1990:201 - 206
  • 4LEWIS R W, SCHREFLER B A. The finite element method in the static and dynamic deformation and consolidation of porous media[M]. New York: John Wiley and Sons, Inc., 1998.
  • 5CARTER J P, BOOKER J R, SMALL J C. The analysis of finite elastoplastic consolidation[J]. Numer. Anal. Geomech., 1979, 3(6): 107 - 129.
  • 6LI X K, ZIENKIEWICZ O C. Multiphase flow in deforming porous media and finite element solution[J]. Comput. Struct., 1992, 45(4): 211 - 227.
  • 7ODA M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses[J]. Water Resour. Res., 1986, 22(9): 1 845 - 1 856.
  • 8ODA M. Permeability tensor for discontinuous rock masses[J]. Geotechnique, 1985, 33(11): 483 - 495.
  • 9MANDELBORT B B. Fractal geometry of nature[M]. San Francisco: Freeman, 1982.
  • 10LI X, ZIENKIEWICZ O C, XIE Y M. A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution[J]. Int. J. Numeri. Meths. Engng., 1990, 30(8): 1 195- 1212.

二级参考文献26

共引文献123

同被引文献15

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部