期刊文献+

拉伸载荷下准脆性材料微裂纹损伤宏细观损伤变量关系初探 被引量:4

ANALYSIS OF RELATIONSHIP BETWEEN MACROSCOPIC DAMAGE AND MESOSCOPIC DAMAGE VARIABLES FOR MICRO-CRACK DAMAGE OF QUASI-BRITTLE MATERIALS UNDER TENSION
下载PDF
导出
摘要 给出一种建立拉伸载荷下准脆性材料微裂纹损伤宏细观损伤变量关系的方法,用于发展连续损伤力学和细观损伤力学思想相结合的损伤力学模型。通过假设宏观损伤分析和细观损伤分析所得到的有效模量等价得到宏细观损伤变量的联系,将宏观损伤变量赋予与细观损伤机制相关的物理意义,并以单轴拉伸为例表明这种分析方法的可行性。 The connection between the continuum damage theory and the mesoscopic damage theory is always a hot and important problem in the field of damage mechanics.To develop the damage models combining continuum damage mechanics with mesoscopic damage mechanics,a new method is given to establish the relationship between macroscopic and mesoscopic damage variables for micro-crack damage of quasi-brittle materials under tension.The relationship is based on the hypothesis that the effective moduli received from the macroscopic and mesoscopic damage analysis are equivalent.The physical significance correlating with the mesoscopic damage mechanism is assigned to the macroscopic damage variable.The uniaxial tension experiment is given as an example to illustrate the feasibility of this analytic method.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2007年第A01期2648-2653,共6页 Chinese Journal of Rock Mechanics and Engineering
基金 国家重点基础研究发展规划(973)项目(2002CB412707 2002CB412705) 国家自然科学基金资助项目(50221402 10372112)
关键词 岩石力学 损伤力学 宏观损伤变量 细观损伤变量 有效模量 rock mechanics damage mechanics macroscopic damage variable mesoscopic damage variable effective moduli
  • 相关文献

参考文献25

  • 1KACHANOV L M. Introduction to continuum damage mechanics[M]. Dordrecht: Martinus Nijhoff, 1986.
  • 2RABOTNOV Y N. Creep problems in structural members[M]. Amsterdam: North-Holland, 1969.
  • 3ROUSSELIER G Finite deformation constitutive relations including ductile fracture damage[C].NEMAT-NASSER S, ed. The Three-dimensional Constitutive Relations and Ductile Fracture. Amsterdam: North-Holland, 1981:331-355.
  • 4LEMAITRE J A. Course on damage mechanics[M]. Berlin: Springer-verlag, 1992.
  • 5MURAKAMI S, OHNO N. A theory of creep and creep damage[C].PONTER A R S, HAYHURST D R, ed. Proceedings of 3rd IUTAM Symposium on Creep in Structure. Berlin: Springer-verlag, 1980: 422 - 443.
  • 6LITEWKA A. Effective material constants for orthotropically damaged elastic solid[J]. Arch mech., 1985, 37(6):631 - 643.
  • 7CHOW C L, WANG J. An anisotropic theory of elasticity for continuum damage mechanics[J]. Int. J. Fracture, 1987, 33(1): 3-16.
  • 8CHOW C L, CHEN X E An anisotropic model of damage mechanics based on end chronic theory of plasticity[J]. Int. J. Fracture, 1992, 55(2): 115 - 130.
  • 9LEMAITRE J. Anisotropic damage law of evolution[J]. Ear. J. Mech. A/Solids, 2000, 19(2): 187-208.
  • 10CHABOCHE J L. Anisotropic creep damage in the framework of continuum damage mechanics[J]. Nucl. Eng. Design, 1984, 73(3): 309 - 319.

二级参考文献5

  • 1陈升平,余天庆,刘祖德.混凝土宏观损伤与细观损伤的结合[J].大连理工大学学报,1997,37(S1):100-105. 被引量:2
  • 2Mazars J. Application de la mecanique de l'endommagement au comportement non lineaire et a la rupture du beton de structure[D]. Univ. Paris VI, 1984.
  • 3Sidoroff F. Description of anisotropic damage application to elasticity[A]. Proc.of IUTAM Colloquium, Physical Nonlinearities in Structural Analysis[C]. Springer, Berlin, 1981. 237-244.
  • 4J W Ju. On two-dimensional self-consistent micromechanical damage models for brittle solids[J]. Inter. J. of Solids Structure, 1991, 27(2): 227-258.
  • 5C L Chow , J Wang. An anisotropic theory of elasticity for continuum damage mechanics[J]. Inter. J. of Fracture, 1987, 33:3-16.

共引文献12

同被引文献32

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部