期刊文献+

保持矩阵Frobenius范数的乘法映射

Multiplicative Maps on Matrices Preserving the Frobenius Norm
下载PDF
导出
摘要 设Γn是满足{aEij|i,j=1,2,…,n,a∈R}■Γn■Mn(R)的一个乘法半群,其中Mn(R)定义R上所有n×n矩阵组成的乘法半群,证明了若f∶Γn→Mn(R)是一个保Frobenius范数映射,则存在正交阵U∈Mn(R),使得U′f(A)=U-1f(A)U=A,A∈Γn. Let Γn be multiplicative semigroup which satisfies {aEij,|i,j = 1,2,..,n,a∈R} lohtain in Γn lohtain in Mn(R), where Mn (R) denotes the semigroup of all n × n matrices over R. In this paper we prove a result: Suppose f: Γn→M n(R) is a multiplicative map that preserves the Frobenius norm, then there exists an a orthogonal matrix U ∈ Mn (R) such that , U′f(A) = U^-1f(A) U =A, arbitary A∈Γn.
作者 胡付高
机构地区 孝感学院数学系
出处 《湖北民族学院学报(自然科学版)》 CAS 2007年第3期268-271,共4页 Journal of Hubei Minzu University(Natural Science Edition)
基金 湖北省教育厅科学技术研究重点资助项目(D200626001)
关键词 全矩阵环 乘法映射 半群 正交阵 FROBENIUS范数 total matrix ring multiplicative maps semigroup orthogonal matrix Frobenius norm
  • 相关文献

参考文献18

  • 1Li C K.Tsing N K.Linear preserver problems:a brief introduction and some special techniques[J].Lin Alg Appl,1992,162-164:217-235.
  • 2Guterman A,Li C K,Semerl P.Some general techniques on linear preserver problems[J].Lin Alg Appl,2000,315:61-81.
  • 3Pierce S.A survey of linear problems[J].Lin Multi Alg,1992,33:1-129.
  • 4Zhang Xian,Cao Chongguang,Bu Changjiang.Additive maps preserving M-P inverses of matrices over fields[J].Linear and Multilinear Algerbra,1999,46:199-211.
  • 5Omladic M,Semrl P.Spectrum-preserving additive maps[J].Lin Alg Appl,1991,153:67-72.
  • 6Omladic M,Semrl P.Additive mappings preserving operators of rank one[J].Lin Alg Appl,1993,182:239-256.
  • 7Cao Chongguang,Zhang Xian,Additive operators preserving idempotent matrices over fields and applications[J].Lin Alg Appl,1996,248:327-338.
  • 8Bell J,Sourour A R.Additive rank-one mappings on triangular matrix algebras[J].Lin Alg Appl,2000,312:13-33.
  • 9Hochwald S H.Multiplicative maps on matrices that preserve the spectrum[J].Lin Alg Appl,1994,212/213:339-351.
  • 10程美玉,李兴华.保持矩阵迹的乘法映射[J].数学杂志,2004,24(1):4-6. 被引量:7

二级参考文献10

  • 1[1]Hochwald S H. Multiplicative maps on matrices that preserve the spectrum[J]. Lin. Alg. Appl., 1994,212/213:339-351.
  • 2[2]Hou Jinchuan. Multiplicative maps on B(X)[J]. Science in China Ser. A, 1998,41:337-345.
  • 3[3]Molnar Lajos. Multiplicative maps on ideals of operators which are local automorphisms[J]. Acta Sci. Math. (Szeged), 1999,65(3-4):727-736.
  • 4[4]Molnar Lajos. Some multiplicative preservers on B(H)[J]. Lin. Alg. Appl., 1999,301:1-13.
  • 5S. W. Hochwald, Multiplicative maps on matrices that preserve the spectrum[J]. Lin. Alg. Appl. ,1994,212/213:339-351.
  • 6L. B. Beasley and N. S. Pullman, Linear operators preserving idempotent matrices over field[J]. Lin.Alg. Appl. ,1991.146:7-20.
  • 7北京大学数学系.高等代数[M].北京:高等教育出版社,2003..
  • 8Hochwald S H.Muhiplicative maps on matrices that preserve the spectrum[J].Lin Alg Appl.1 994,212/213:339-351.
  • 9Beasley L B,Pullman N L.Linear operators preserving idempotent matrices over field[J].Lin Alg Appl,1991,146:7-20.
  • 10程美玉,李兴华.保持矩阵迹的乘法映射[J].数学杂志,2004,24(1):4-6. 被引量:7

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部