摘要
设Γn是满足{aEij|i,j=1,2,…,n,a∈R}■Γn■Mn(R)的一个乘法半群,其中Mn(R)定义R上所有n×n矩阵组成的乘法半群,证明了若f∶Γn→Mn(R)是一个保Frobenius范数映射,则存在正交阵U∈Mn(R),使得U′f(A)=U-1f(A)U=A,A∈Γn.
Let Γn be multiplicative semigroup which satisfies {aEij,|i,j = 1,2,..,n,a∈R} lohtain in Γn lohtain in Mn(R), where Mn (R) denotes the semigroup of all n × n matrices over R. In this paper we prove a result: Suppose f: Γn→M n(R) is a multiplicative map that preserves the Frobenius norm, then there exists an a orthogonal matrix U ∈ Mn (R) such that , U′f(A) = U^-1f(A) U =A, arbitary A∈Γn.
出处
《湖北民族学院学报(自然科学版)》
CAS
2007年第3期268-271,共4页
Journal of Hubei Minzu University(Natural Science Edition)
基金
湖北省教育厅科学技术研究重点资助项目(D200626001)