摘要
通过把系数含有二项式系数与排列数的交错级数型线性微分方程化为可逐次积分的线性微分方程,找出了求这类方程通解的方法与理论,把所得定理给出了严格的证明,并通过实例介绍了它的应用.
By transforming the interlace series type linear differential equation with coefficient containing binomial coefficients and arrangement number into the linear differential equation of successive integral, the theory and method for solving this kind of equation are determined. The theorem obtained is proved strictly and the application is introduced through examples.
出处
《湖北民族学院学报(自然科学版)》
CAS
2007年第3期279-281,共3页
Journal of Hubei Minzu University(Natural Science Edition)
关键词
二项式系数
排列数
交错级数
逐次积分
线性微分方程
解法
binomial coefficients
arrangement number
interlace series
successive integral
linear differential equation
solution