期刊文献+

基于小波变换的多尺度水平集算法研究 被引量:6

Multiresolution Level Set Studying Based on Wavelet Transform
下载PDF
导出
摘要 针对传统水平集算法在处理低对比度图像时,出现的在局部梯度极大值区域及虚假边缘处停止演化等问题,提出了一种基于小波变换的多尺度水平集算法.采用高斯函数的导函数作为小波函数,使用独立强度传播模型来估计小波函数每一点尺度因子的值,再将沿x,y两个方向小波变换模的递减函数作为水平集速度停止项,对待处理图像进行水平集演化运算.实验结果表明,该方法优于传统水平集变换法. A new level set way based on multiresolution wavelet transform was proposed, in order to solve the problem of the level set that will often converge to the local gradient maximum region or fake edges.First, the gauss derived function was used as wavelet function to get some different scale and directional images. Second, the intensity dependent spread(IDS) model was used to estimate the value of scale factors. Then, using the decreasing function of x, y two direction wavelet transforms modulus as the stop item and evolves the level set function. Finally, the experimental results showed that the developed algorithm is verified better than the traditional one.
出处 《光子学报》 EI CAS CSCD 北大核心 2007年第2期372-375,共4页 Acta Photonica Sinica
基金 国家航天基金(N4CH008) 航空基础科学基金(04I53067) 武器装备预研基金(51401040204HK03347)资助
关键词 水平集 小波变换 多尺度 独立强度传播模型 速度停止项 Level set Wavelet transform Multiresolution IDS model Stopping term
  • 相关文献

参考文献12

  • 1CASELLES V,KIMMEL R,SAPIRO G.Geodesic active contours[J].International Journal of Computer Vision,1997,22(1):61-79.
  • 2SIDDIQI K,LAUZIERE Y B,TANNENBAUM A,et al.Area and length minmizing flows for shape segmentation[J].IEEE Transactions on Image Processing,1998,7(3):433-443.
  • 3PARAGIOS N K.Geodesic active regions and level set methods:contributions and applications in artificial vision[Ph.D Thesis][M].France:School of computer Sicence,University of Nice Sophia Antipolis,2000:22-83.
  • 4MALLAT S,HWANG W L.Singularity detection and processing with wavelets[J].IEEE Trans.on Information Theory,1992,38(2):617-643.
  • 5赵育良,赵友庚,李开端,李英杰.基于小波变换的复杂航空图像的边缘提取[J].光电工程,2002,29(4):57-60. 被引量:14
  • 6MALLADI R,SETHIAN J A,VEMURI B C.Shape modeling with front propagation:a level set approach[J].IEEE Trans on PAMI,1995,17(2):158-175.
  • 7尹平,ns.cetin.net.cn,王润生.自适应多尺度边缘检测[J].软件学报,2000,11(7):990-994. 被引量:21
  • 8IZQUIERDO E,GHANBARI M.Nonlinear gaussian filtering approach for object segmentation[J].IEEE Proc on Vision,Image and Signal Processing,1999,146(3):137-143.
  • 9VAEZI M,BAVARIAN B,HEALEY G.Optimum intensity-dependent spread filters in image processing[J].Image Processing Algorithms and Techniques II,SPIE,1991,1452:57-63.
  • 10过润秋,李大鹏,林晓春.红外点目标检测的小波变换方法研究[J].光子学报,2004,33(4):464-468. 被引量:26

二级参考文献22

  • 1Cohen A, Daubechies I,Vial P. Wavelet on the interval and fast wavelet transform. Appl Comp Harm Anal, 1993,1:54 ~81.
  • 2Yu Y, Weaver J B,et al. Wavelet transform domain filters: a spatial selective noise filteration technique. IEEE Trana on Image Processing, 1994,3 (6) :747 ~ 757.
  • 3Mallat S G, Zhong S. Singularity detection and processing with wavelet. IEEE Trans on IT, 1992,38(2) :617 -643.
  • 4Donoho D L De-noising by soft-thresholding. IEEE Trans on IT, 1995,41 (3) :612 ~ 627.
  • 5Charlene E C, Jerry Siliverman. Optimization of point target tracking filters. IEEE Transactions on Aerospace and Electronic Systems, 2000,36( 1 ) :15 -25.
  • 6Mallat S G. Theory for multiresolution signal decomposition:the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11 (7) :674-693.
  • 7Mallat S G. A Wavelet Tour of Signal Processing, San Diego: Academic Press, 1998. 302 - 310.
  • 8Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage. Biometrika, 1994 ,81 (6) : 425 - 455.
  • 9[美]崔锦泰著 陈正兴译.小波分析导论[M].西安:西安交通大学出版社,1995.1-60.
  • 10Jeong H,IEEE Transactions on Pattern AnalysisMachine Intelligence,1992年,14卷,5期,579页

共引文献85

同被引文献48

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部