期刊文献+

迭代更新蚁群管路敷设系统参数的敏感性分析 被引量:1

Sensibility Analysis of Parameters in ACO for Solving Ship Pipe Routing
下载PDF
导出
摘要 通过应用在船舶管路优化布局上的迭代更新蚁群算法,对其中所涉及的各参数进行了大量系统的仿真实验,在整个迭代过程中,为了得到动态平衡,自适应调整参数是一个有效的方法,在实验基础上分析了各参数的不同设置对算法性能的影响,以利于蚁群算法的进一步拓展和推广。 Based on the ACO with the iterative pheromone updating for the ship pipe routing design, this paper analyses the influence of the parameters involved in the performance of the algorithm through large numbers of simulation experiments. To obtain a dynamic balance between exploitation and exploration during the evolution, adaptively adjusting parameters with the states of evolution is an effective measure. The results are beneficial to the application and development of the ant colony algorithm in optimization problems.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第15期36-39,共4页 Computer Engineering
关键词 船舶管路 蚁群优化 参数 标准差 离散度 ship pipe ant colony optimization(ACO) parameter standard deviation dispersion
  • 相关文献

参考文献10

  • 1Colorni A,Dorigo M,Maniezzo,et al.Distributed Optimization by Ant Colonies[C]//Proceedings of the 1st European Conference on Artificial Life,Paris.1991.
  • 2Dorigo M,Maniezzo V,Colorni A.The Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Trans.on Systems,Man,and Cybernetics,Part B,1996,26 (1):29-41.
  • 3Dorigo M,Gambardella L M.Ant Colony System:A Cooperative Learning Approach for the Traveling Salesman Problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
  • 4Stützle T.Hoos H.Max-min Ant System[J].Future Generation Computer Systems,2000,16(8):889-914.
  • 5Bullnheimer B,Hartl R F,Strauss C.A New Rank-based Version of the Ant System:A Computational Study[J].Central European Journal for Operations Research and Economics,1999,7(1):25-38.
  • 6Costa D,Hertz A.Ants Can Color Graphs[J].Journal of the Operational Research Society,1997,48(3):295-305.
  • 7Maniezzo V,Colorni A.The Ant System Applied to the Quadratic Assignment Problem[J].IEEE Transactions on Knowledge and Data Engineering,1999,11(5):63-70.
  • 8Fan Xiaoning,Lin Yan,Ji Zhuoshang.The Ant Colony Optimization for Ship Pipe Route Design in 3D Space[C]//Proceedings of the 6th World Congress on Control and Automation.2006:3103-3108.
  • 9陈崚,沈洁,秦玲,陈宏建.基于分布均匀度的自适应蚁群算法[J].软件学报,2003,14(8):1379-1387. 被引量:111
  • 10Blum C,Roli A.Metaheuristics in Combinatorial Optimization:Overview and Conceptual Comparison[J].ACM Computer Surveys,2003,35(3):268-308.

二级参考文献4

共引文献110

同被引文献17

  • 1石立宝,郝晋.随机摄动蚁群算法的收敛性及其数值特性分析[J].系统仿真学报,2004,16(11):2421-2424. 被引量:7
  • 2卢辉斌,贾兴伟,范庆辉.基本蚂蚁算法中参数的讨论与改进[J].计算机工程,2005,31(20):175-176. 被引量:7
  • 3吴春明,陈治,姜明.蚁群算法中系统初始化及系统参数的研究[J].电子学报,2006,34(8):1530-1533. 被引量:47
  • 4刘刚,郭旭红,冯志华,朱忠奎.蚁群算法在TSP中的仿真应用及最优参数选择研究[J].苏州大学学报(工科版),2007,27(1):56-59. 被引量:7
  • 5Kodek D M. Design of optimal finite word length FIR digital filters using integer programming tech- niques ]-Jl. IEEE Trans Aeoust, Speech, Signal Process, 1980,28..304-308.
  • 6Lim Y C, Parker S R. Discrete coefficient FIR digitalfilter design based upon an LMS criteria[J]. IEEE Trans Circuits Syst, 1983, CAS30:723-739.
  • 7Jaumard M, Minoux M, Siohan P. Finite precision design of FIR digital filters using a convexity proper- ty - J ]. IEEE Trans Acoust, Speech, Signal, Process, 1988,36 .. 407-411.
  • 8Cho N, Lee S U. Optimal design of finite precision FIR filters using linear programming with reduced constraints[J]. IEEE Trans Signal Process, 1998,46 : 195-199.
  • 9Benvenuto B, Marchesi M. Digital filters design by simulated annealing[J]. IEEE Trans Circuits Syst, 1989,36 459-460.
  • 10Gentili P, Piazza F, Uncini A. Efficient genetic algo- rithm design for power-of-two FIR filters, Proc [C]//IEEE Int Conf Acoust, Speech and Signal Prcocess. [S.I.]: IEEE, 1995:1268-1271.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部