期刊文献+

支持向量回归参数的混合选择 被引量:4

Hybrid Selection of Parameters for Support Vector Regression
下载PDF
导出
摘要 为提高支持向量回归算法的学习能力和泛化性能,提出了一种优化支持向量回归参数的混合选择算法。根据训练样本的规模和噪声水平等信息,确定支持向量回归参数的取值范围,用实数编码的免疫遗传算法搜索最佳参数值。混合选择算法具有较高的精度和效率,在选择支持向量回归参数时,不必考虑模型的复杂度和变量维数。仿真实验结果表明,该算法是选择支持向量回归参数的有效方法,应用到函数逼近问题时具有优良的性能。 In order to improve support vector regression(SVR) learning ability and generalization performance, a hybrid selection algorithm for optimizing SVR parameters is proposed. The ranges of the parameters are set according to the information about the training data size and noise level in training samples, and a real-coding based immune genetic algorithm is employed to search the optimal parameters. Hybrid selection algorithm is a precise and efficient method and it need not to consider SVR dimensionality and complexity. Simulation experiments show that the proposed method is an effective approach for SVR parameters selection with good performance on function approximation problem.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第15期40-42,63,共4页 Computer Engineering
关键词 支持向量回归 参数选择 训练样本信息 免疫遗传算法 support vector regression parameters selection training samples information immune genetic algorithm
  • 相关文献

参考文献11

  • 1VapnikV 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2Smola A,Sch(o)lkopf B.A Tutorial on Support Vector Regression[J].Statistics and Computing,2004,14(3):199-222.
  • 3Chapelle O,Vapnik V,Bousquet O,et al.Choosing Multiple Parameters for Support Vector Machines[J].Machine Learning,2002,46(1):131-159.
  • 4Chalimourda A,Sch(o)lkopf B,Smola A.Experimentally Optimal v in Support Vector Regression for Different Noise Models and Parameter Setting[J].Neural Networks,2004,17(1):127-141.
  • 5Jordaan E M,Smith G F.Estimation of the Regularization Parameter for Support Vector Regression[C]//Proceedings of the IEEE International Joint Conference on Neural Network.2002,3:2192-2197.
  • 6Kwok J T,Tsang I W.Linear Dependency Betweenε and the Input Noise inε-Support Vector Regression[J].IEEE Transactions on Neural Networks,2003,14(3):544-553.
  • 7朱嘉钢,王士同,杨静宇.鲁棒r-支持向量回归机中参数r的选择研究[J].控制与决策,2004,19(12):1383-1386. 被引量:12
  • 8Cherkassky V,Ma Y.Practical Selection of SVM Parameters and Noise Estimation for SVM Regression[J].Neural Networks,2004,17(1):113-126.
  • 9(U)stün B,Melssena W J,Oudenhuijzenb M,et al.Determination of Optimal Support Vector Regression Parameters by Genetic Algorithms and Simplex Optimization[J].Analytica Chimica Acta,2005,544(1/2):292-305.
  • 10袁小芳,王耀南.基于混沌优化算法的支持向量机参数选取方法[J].控制与决策,2006,21(1):111-113. 被引量:55

二级参考文献15

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2董春曦,饶鲜,杨绍全,徐松涛.支持向量机参数选择方法研究[J].系统工程与电子技术,2004,26(8):1117-1120. 被引量:65
  • 3Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines[M]. Cambridge: Cambridge University Press, 2000.
  • 4Vapnik V. Statistical Learning Theory [M]. New York: Wiley, 1998.
  • 5Vladimir Cherkassky, Yunqian Ma. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2003,17 (1) : 113-126.
  • 6Smola A J, Scholkopf B. A tutotial on support vector regression[R]. London: University of London, 1998.
  • 7Law M H, Kwok J T. Bayesian support vector regression [A]. Proc of the English Int Workshop on Artificial Intelligence and Statistics[C]. Florida: Key West,2001. 239-244.
  • 8Gao J B, Gunn S R, Ham's C J. A probabilistic framework for SVM regression and error bar estimation[J].Machine Learning, 2002,46 (2): 71-89.
  • 9Vapnik V. An Overview of Statistical Learning Theory[J]. IEEE Trans on Neural Networks, 1999, 10(5):988-999.
  • 10Christopher J C Burges. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998, 2 (2):121-167.

共引文献141

同被引文献27

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部