期刊文献+

基于丢包补偿和GMM-DM的说话人识别算法

Speaker Recognition Algorithm Based on Packets Loss Compensation and GMM-DM
下载PDF
导出
摘要 针对说话人语音数据在网络传输过程中的丢失问题,该文提出了一种基于Lagrangian插值的分组恢复方法,评估了丢失帧的实际位置,效果良好,改进了GMM识别算法,分析了一种基于GMM-DM的识别算法,克服了数据丢失对系统识别率的影响。实验结果表明,Lagrangian插值分组恢复方法和GMM-DM识别算法,在丢包率比较大时,可以减小丢帧而造成的负面影响,在训练数据不充分时,提高了系统的识别率。 Aiming at problem of packets loss, this paper proposes a method of lost packets compensation based on Lagrangian interpolation and a new classifier GMM-DM. The algorithm improves performance of GMM classifier when training data is inadequate due to the packets loss during transportation. Experiments show that compensation based on Lagrangian interpolation and GMM-DM new classifier could obtain better results than traditional methods when the ratio of lost packets is relatively high.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第15期205-206,229,共3页 Computer Engineering
关键词 说话人识别 丢包补偿 GMM-DM speaker recognition lost packets compensation GMM-DM
  • 相关文献

参考文献7

  • 1张钶,谢忠诚,鞠九滨.基于实时传输协议的丢包实时修复[J].软件学报,2001,12(7):1042-1049. 被引量:27
  • 2Michael J C,Eluned S P.A Comparison of Mode Lestimation Techniques for Speaker Verification[C]//Proc.of ICASSP'97.1997.
  • 3张磊,韩纪庆,郑铁然.语音信号处理[M].北京:清华大学出版社,2004.
  • 4朱青松,吴仕明,张海斌.基于高斯混合模型的说话人识别系统[J].黑龙江科技学院学报,2004,14(2):113-116. 被引量:2
  • 5Reynolds D A.Speaker Identification and Verification Using Gaussian Mixture Speaker Models[J].Speech Communication,1995,17(1/2).
  • 6Reynolds R R.Robust Text-independent Speaker Identification Using Gaussian Mixture Speaker Models[J].IEEE Trans.on Speech Audio Processing,1995,3(1):72-83.
  • 7Zhang Lei,Han Jiqing,Wang Chengfa.A Novel Weighted Likelihood Measure for Speech Recognition Under G-force[C]//Proc.of the 7th Joint Conference on Information Science,North Carolina.2003.

二级参考文献2

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部