期刊文献+

系统生物技术——组学时代的代谢工程

Systems biotechnology—metabolic engineering in omics era
原文传递
导出
摘要 高通量实验技术的广泛应用产生了海量数据,利用生物信息学工具整合这些数据,加深了人们对细菌生理活动规律的认识,系统生物学应运而生。系统生物学的出现使代谢工程从局部通路水平上升到整体水平,代谢工程也因此进入了新的发展阶段——系统生物技术时代。系统生物技术通过整合各个层次组学数据,建立数学模型,或通过比较不同菌株或同一菌株在不同条件下基因组、转录组、蛋白组或代谢组的差异以阐明生命活动规律,在此基础上,对影响表型的靶基因进行改造,得到符合预期的表型。随着新的高通量实验技术的不断运用以及生物信息学的发展,系统生物技术必将取得更大进步。 High throughput technology has produced large amounts of omics data. Integration of these data with the help of bioinformatics tools has facilitated our understanding of the cell physiology onto the system level. The metabolic engineering strategy has changed from the local pathway level to the whole system level, and the era of systems biotechnology coming. Systems biotechnology manipulates the targets identified by constructing system level models or by comparing the genome, transcriptome, metabolome,and proteome of different strains or the same strain under different conditions. Great progress will only be achieved with the development of both technology and bioinformatics tools.
出处 《军事医学科学院院刊》 CSCD 北大核心 2007年第5期481-483,共3页 Bulletin of the Academy of Military Medical Sciences
基金 国家自然科学基金资助项目(No.30300010)
关键词 系统生物技术 代谢工程 基因组 转录组 代谢组 蛋白组 systems biotechnology metabolic engineering genome transcriptome metabolome proteome
  • 相关文献

参考文献15

  • 1Stephanopoulos G, Alper H, Moxley J. Exploiting biological complexity for strain improvement through systems biology [ J ]. Nat Biotechnol, 2004, 22(10) : 1261 - 1267,
  • 2Nielsen J, Olsson L, An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology[J]. FEMS Yeast Res, 2002,2(2) : 175 -181.
  • 3Park SJ, Lee SY, Cho J ,et al. Global physiological understanding and metabolic engineering of microorganisms based on omics studies [ J ]. Appl Microbiol Biotechno1,2005,68 (5) :567 - 579.
  • 4Oldiges M, Kunze D, Degenring D, et al, Sumulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway[ J ]. Biotechnol Prog, 2004, 20 (6) : 1623 -1633.
  • 5Schmid JW, Mauch K, Reuss M, et al. Metabolic design based on a coupled gene expression--metabolic network model of tryptophan production in Escherichia coli [ J ]. Metab Eng, 2004,6 (4) :364 -377.
  • 6Fong SS, Palsson BO. Metabolic gene-deletion strains of Escherichia coil evolve to computationally predicted growth phenotypes [J]. Nat Genet, 2004,36(10) : 1056-1058.
  • 7Covert MW, Knight EM, Reed JL, et al. Integrating highthroughput and computational data elucidates bacterial networks [J]. Nature, 2004,429(6987) : 92 -96.
  • 8Ohnishi J, Mitsuhashi S, Hayashi M, et al. A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-produciug mutant [ J ]. Appl Microbiol Biotechnol, 2002,58(2) : 217 -223.
  • 9Lee JH, Lee DE, Lee BU, et al. Global analyses of transcriptomes and proteomes of a parent strain and an L-threonine-overproducing mutant strain [ J ]. J Bacteriol, 2003, 185 ( 18 ) : 5442 - 5451.
  • 10Choi JH, Lee SJ, Lee SJ, et al. Enhanced production of insulinlike growth factor 1 fusion protein in Escherichia coli by coexpression of the downregulated genes identified by transcriptome profiling[ J]. Appl Environ Microbiol, 2003, 69 (8) : 4737 -4742.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部