期刊文献+

基于遗传算法的旋转机械故障诊断方法融合 被引量:28

ROTATING MACHINERY FAULT DIAGNOSIS COMBINATION OF METHOD BASED ON GENETIC ALGORITHM
下载PDF
导出
摘要 针对任何单一性质故障特征、单一诊断方法难以实现在整个故障状态空间上准确诊断的局限性,提出基于遗传算法的旋转机械融合诊断方法。该方法能有效利用各种不同性质故障特征和不同诊断方法,使其发挥各自的优点,从而提高诊断的准确率。针对不同特征利用遗传算法将神经网络诊断和人工免疫诊断方法融合起来,使每一个诊断方法都在其优势空间区域发挥作用,使用小波包能量特征和双谱特征对两种诊断方法训练后,用遗传算法优化诊断融合权值矩阵对旋转机械进行实例诊断结果表明,该融合诊断方法能有效地提高故障诊断的准确率,并能提高诊断系统的鲁棒性。 The combination of fault diagnosis methods based on genetic algorithm for rotating machinery is presented, as there exists limitness for any single fault feature, any single diagnosis method to achieve the accurate diagnosis needs the whole diagnosis state area. This method can effectively use diversified different fault character and diagnosis methods that can present their advantage respectively, so that the diagnosis accuracy is improved. Neural network diagnosis method and artificial immune system diagnosis method are combined by using genetic algorithm. Two different characters, Wavelet Packet" energy" character and Bispectrum character, are used. After training the two fault diagnosis methods, the genetic algorithm is used to optimize diagnosis combination weight matrix. It is demonstrated from the diagnosis example of rotating machinery that the combination diagnosis method can improve the accuracy rate and diagnosis system robust quality effectively.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2007年第10期227-233,共7页 Journal of Mechanical Engineering
关键词 遗传算法 融合诊断 旋转机械 人工免疫 Genetic algorithm Combination diagnosis Rotating machinery Artificial immune system
  • 相关文献

参考文献16

  • 1王耀才.智能故障诊断技术的现状与展望[J].徐州建筑职业技术学院学报,2003,3(1):37-39. 被引量:14
  • 2OBERHOLSTER A J, HEYNS, P S. On-line fan blade damage detection using neural networks[J]. Mechanical Systems and Signal Processing, 2006, 20.. 78-93.
  • 3MECHEFSKE C K. Objective machinery fault diagnosis using fuzzy logic[J]. Mechanical System and Signal Processing, 1998, 12: 855-862.
  • 4张敬芬,孟光,赵德有.基于模糊神经网络的薄板不同指标裂纹诊断[J].机械工程学报,2006,42(3):145-149. 被引量:10
  • 5窦唯,刘树林,孙明,陈业生.生物免疫机理在往复压缩机在线状态监测中的应用[J].流体机械,2004,32(5):16-19. 被引量:8
  • 6DASGUPTA D, KRISHNAKUMER K, WONG D, et al. Negative selection algorithm for aircraft fault detection[C]// The 3rd International Conference on Artificial Immune Systems Catania, Sicily, Italy, September, 2004: 13-16.
  • 7KIMURA F, ShR/DHAR M. Handwritten numeral recognition based on multiple algorithms[J]. Pattern Recogn., 1991, 24 (10). 969-983.
  • 8CHO S B, KIM J H. Multiple network fusion using fuzzy logic [J]. IEEE Trans. Neural Netw, 1995, 6 (2): 497-501.
  • 9KITTLER J, HATEF M, DUIN R P W. Combining classifiers [C]//Proc. IEEE Conf. ICPR, 1996: 897-901.
  • 10KIM E, KIM W, LEE Y. Combination of multiple classifiers for the customers puchase behavior prediction [J]. Decision Support Sytems, 2002 (34): 167-175.

二级参考文献33

  • 1Darrell Rigby, Frederick F. Reichheld. Avoid the Four Perils of CRM [ J ]. Harvard Business Review,2002,(1) :101 - 109.
  • 2Jaesoo Kim, et al. Segmenting the Market of West Australian Senior Tourists Using an Artificial Neural Network [ J ]. Tourism Management, 2003,24 ( 1 ): 25- 34.
  • 3A. Vellido. Segmentation of the On - line Shopping Market Using Neural Networks [ J ]. Expert Systems with Applications, 1999,17 (4): 303 - 314.
  • 4Carrie M. Heilman, Douglas Bowman. Segmenting Consumers Using Multiple - Category Purchase Data[J]. International Journal of Research in Marketing,2002,19(3) :225 -252.
  • 5Freedman R S, etal. AI in the Capital Markets [ M ].Chicago: ProbusPublishers, 1995.
  • 6Eunju Kim, Wooju Kim, Yillbyung Lee. Combination of Multiple Classifiers for the Customer′s Purchase Behavior Prediction [ J ]. Decision Support Systems,2002,(34) :167 - 175.
  • 7T.K. Ho, J.J. Hull, S. N. Srihari. Decision Combination in Multiple Classifier Systems [ J ]. IEEE Trans. Pattern Anal. Mach. Intell, 1994,16(1): 66-75.
  • 8Mitchell M. An Introduction to Genetic Algorithms.MIT Press, 1996.
  • 9Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning [ M ]. AddisonWesley, 1989.
  • 10Forrest S, et al. Self-nonself Discrimination in a Computer[A].Proc IEEE Symposium on Research in Security and Privacy[C]. Okaland, 1994.202.

共引文献33

同被引文献260

引证文献28

二级引证文献256

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部