期刊文献+

TTI介质qP波方程频率—空间域加权平均有限差分算子 被引量:12

Weighted mean finite-difference operator of qP wave equation in frequency-space domain for TTI medium
下载PDF
导出
摘要 波动方程有限差分方法能够较精确地模拟任意非均匀介质中的地震波场,但它本身存在着数值频散问题。在具有倾斜对称轴的横向各向同性介质(TTI介质)地震波正演模拟中,为了解决常规有限差分算子的数值频散问题,本文构造了频率—空间域qP波方程加权平均有限差分算子,求取了归一化相速度,并根据最优化理论中的高斯—牛顿法确定了加权平均差分算子的最优加权系数。利用常规差分算子和加权平均差分算子对归一化相速度进行了频散分析,并对均匀TTI介质(包括各向同性介质和椭圆各向异性介质)中的qP波地震波场进行了有限差分数值模拟。结果表明:加权平均有限差分算子具有较高的数值精度,能有效地压制常规有限差分算子的数值频散,为TTI介质频率—空间域qP波正演模拟奠定了基础。 Wave-equation finite-difference algorithm can more preciously simulate seismic wavefield for any non-uniform medium,but have the issue of numeric dispersion. In a seismic wave forward simulation in titled transversely isotropic medium (TTI medium) with titled symmetric axis, in order to solve the issue of numeric dispersion of ordinary finite-difference operator, the paper constructed the weighted mean finite-difference operator of qP-wave equation in frequency-space domain,computed normalized phase velocity and determined the optimal weighted coefficient of weighted mean difference operator according to Gauss-Newton approach of optimization theory. Using ordinary difference operator and weighted mean difference operator to analyze the dispersion of normalized phase velocity and carry out numeric finite-difference simulation of qP-wave seismic wavefield in u-niform TTI medium (including isotropic medium and ellipsoid anisotropic medium). The simulated results showed that the weighted mean finite-difference operator is characterized by higher numeric precision and capable to effectively suppress the numeric dispersion by ordinary finite-difference operator,laying the foundation of qP-wave forward simulation of TTI medium in frequency-space domain.
出处 《石油地球物理勘探》 EI CSCD 北大核心 2007年第5期516-525,共10页 Oil Geophysical Prospecting
关键词 TTI介质 加权平均 有限差分算子 最优加权系数 数值频散 TTI medium, weighted mean, finite-difference operator,optimum weighted coefficient, numeric dispersion
  • 相关文献

参考文献15

  • 1Jo C H, Shin C and Suh J H. An optimal 9-point, finite-difference, frequency-space, 2 D scalar wave extrapolator. Geophysics, 1996, 61 (2) : 529 -537
  • 2Shin C and Sohn H. A frequency-space 2-D scalar wave extrapolator using extend 25-point finite- difference operator. Geophysics, 1998, 63 ( 1 ):289 - 296
  • 3Stekl I and Pratt R G. Accurate viscoelastic modeling by frequency-domain finite differences using rotated operators. Geophysics, 1998, 63(5) :1779- 1794
  • 4Min D J, Shin C, Kwon B D et al. Improved frequency-domain elastic wave modeling using weighted- averaging difference operators. Geophysics, 2000, 65(3):884-895
  • 5吴国忱,梁锴.VTI介质频率-空间域准P波正演模拟[J].石油地球物理勘探,2005,40(5):535-545. 被引量:40
  • 6Min D J, Yoo H S, Shin C, Hyun H J et al. Weighted-averaging finite-element method for scalar wave equation in the frequency domain. J Seism Explor, 2002, 11:197-222.
  • 7Min D J, Shin C, Pratt R G, et al. Weighted-averaging finite-element method for 2D elastic wave equations in the frequency domain. BSSA, 2003, 93(2):904-921.
  • 8牛滨华,何樵登,孙春岩.六方各向异性介质方位矢量波动方程及其相速度[J].石油物探,1994,33(1):19-29. 被引量:14
  • 9Winterstein D F. Velocity anisotropy terminology for geophysicists. Geophysics, 55 (8):1070- 1088
  • 10吴国忱.各向异性介质地震波传播与成像.山东东营:中国石油大学出版社,2005

二级参考文献16

  • 1潘冬明,杨顶辉,张慧.含煤层地质环境下地震波场的数值模拟[J].地球物理学进展,1997,12(1):74-83. 被引量:4
  • 2杨顶辉,滕吉文.各向异性介质中三分量地震记录的FCT有限差分模拟[J].石油地球物理勘探,1997,32(2):181-190. 被引量:37
  • 3Hokstad K. 3-D elastic finite-difference modeling in tilted transversely isotropic media[J]. 72th Ann. Internat. Mtg.Soc Expl Geophys Expanded Abstracts, 2002,1951-1954.
  • 4Fei T, Larner K. Elimination of numerical dispersion in finite-difference modeling and migration by flux-corrected transport[J]. Geophysics, 1995,60(6) : 1830-1842.
  • 5Li Z. Compensating finite-difference errors in 3-D migration and modeling[J]. Geophysics, 1995, 56(10) : 1650-1660.
  • 6Winterstein D F. Velocity anisotropy terminology for geophysicists[J]. Geophysics, 1990,55 (8) : 1070-1088.
  • 7Levander A R. Four-order finite-difference P-SV seismograms[J]. Geophysics, 1988,53(11) : 1425-1436 .
  • 8Virieux J. P-SV wave propagation in heterogeneous media:velocity-stress finite difference method [J]. Geophysics,1986,51(40) :889-901.
  • 9Virieux J. SH-wave propagation in heterogeneous media: velocity-stress finite-difference method[J]. Geophysics, 1984, 49(11) : 1933-1957.
  • 10Boris J P, Book D L. Flux-corrected transport. I. SHASTA, A fluid transport algorithm that works[J]. J Comput Phys, 1973,11:38-69.

共引文献130

同被引文献323

引证文献12

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部