期刊文献+

水热法合成Bi_(1.5)ZnNb_(1.5)O_7纳米粉体 被引量:2

SYNTHESIS OF Bi_(1.5)ZnNb_(1.5)O_7 NANOPOWDER BY THE HYDROTHERMAL METHOD
下载PDF
导出
摘要 以Bi(NO3)3·5H2O,ZnO和Nb2O5为原料,KOH作为矿化剂,用水热法合成了单相Bi1.5ZnNb1.5O7粉体。用N2吸附法测定单相Bi1.5ZnNb1.5O7粉体的比表面积并计算相应的粒径。研究了KOH浓度、合成温度和反应时间对粒径的影响。用X射线衍射分析合成粉体的物相组成,并通过Scherrer公式计算粉体晶粒的尺寸。用透射电子显微镜分析合成粉体的形貌。结果表明:采用水热法可以合成单相立方焦绿石结构的Bi1.5ZnNb1.5O7纳米粉体。改变水热反应条件,可以控制合成粉体的粒径和比表面积大小。当KOH浓度为1.8mol/L,温度为180~220℃,反应时间为24h时,合成的Bi1.5ZnNb1.5O7纳米粉体的最小粒径为51nm,最大比表面积为28.8m2/g。 Cubic pyrochlore phase Bi1.5ZnNb1.5O7 powder was successfully synthesized by the hydrothermal method (HTM) with Bi(NO3)3·SH2O, ZnO and Nb2O5 as starting materials and KOH as mineralizer. The specific surface area of the powders was detected by the N2 adsorption method, and the sizes of synthesized powder were calculated. The effects of KOH concentrations, synthesis temperature and reaction time on particle size were investigated. The phase and microstructure of the powder were analyzed using X-ray diffraction and transmission electron microscope. The crystalline sizes were determined by the Scherrer equation. The results show that the cubic pyrochlore phase Bi1.5ZnNb1.5O7 powder can be obtained by HTM. The minimal powders' size is 51 nm and the maximal specific surface area is 28.8 m^2/g when the Bi1.5ZnNb1.5O7 powder is synthesized under hydrothermal conditions with a synthesis temperature of 180-220 ℃, a reaction time of 24h and a KOH concentration of 1.8 mol/L.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2007年第10期1277-1281,共5页 Journal of The Chinese Ceramic Society
基金 河南省国际科技合作计划(0346620012) 河南省杰出青年科学基金(074100510008)资助项目
关键词 水热法 铌酸铋锌 纳米粉体 合成温度 反应时间 hydrothermal method bismuth zinc niobate nano powder synthesizing temperature reaction time
  • 相关文献

参考文献11

二级参考文献60

共引文献187

同被引文献22

  • 1王焕平,张启龙,杨辉.纳米粉体对低温烧结CMS微波介质陶瓷的改性[J].电子元件与材料,2006,25(9):37-39. 被引量:3
  • 2施尔畏,元如林,夏长泰,王步国,仲维卓.水热条件下钛酸钡晶粒生长基元模型研究(Ⅱ)生长基元稳定能计算及晶粒的成核与生长[J].物理学报,1997,46(1):1-11. 被引量:30
  • 3Silva S A, Zanetti S M. Bismuth zinc niobate pyrochlore Bi1.5ZnNb1.5O7 from a polymeric urea-containing precursor [J]. Mater Chem Phys, 2005, 10:1-5.
  • 4Withers R L. Local crystal chemistry, induced strain and short range order in the cubic pyrochlore (Bi1.5-αZn0.5-β)(Zn0.5-γNb1.5-δ)O(7-1.5α-β-γ-2.5δ) (BZN) [J]. J Solid State Chem, 2004, 177(1): 231 -244.
  • 5Wang H, Elsebrock R, Schneller T, et al. Bismuth zinc niobate (Bi1.5ZnNb1.5O7) ceramics derived from metallo-organic decomposition precursor solution [J]. Solid State Commun, 2004, 132:481 -486.
  • 6Silva S A, Zanetti S M. Bismuth zinc niobate pyrochlore Bi1.5ZnNb1.5O7 from a polymeric urea-containing precursor [J]. Mater Chem Phys, 2005, 10:1-5.
  • 7Kim J H, Andeen D, Lange F F. Hydrothermal growth of periodic, single-crystal ZnO microrods and microtunnels [J]. Adv Mater, 2006, 18(18): 2453-2457.
  • 8Li H M, Evans E A ,Wang G X, et al. Single-and multi-hole baffles: a heat transfer and fluid flow control for hydrothermal growth [J]. J Cryst Growth, 2005, 275:561 -571.
  • 9Kitsunai H, Kawashima N, Takeuchi S, et al. Development of miniature needle-type hydrophone with lead zirconate titanate polycrystalline film deposited by hydrothermal method [J]. Jpn J Appl Phys, 2006, 45(5): 4688-4692.
  • 10LIB R, MO Y H. Inorganic dielectric materials [M]. Shanghai: Shanghai science and technology press, 1986: 360-363.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部